
Design Patterns in Practice from the Point of View of Developers∗
Padrões de Projeto na Prática do Ponto de Vista dos Desenvolvedores

Bruno Luan de Sousa1

Mívian Marques Ferreira2

Mariza Andrade da Silva Bigonha3

Kecia Aline Marques Ferreira4

Resumo

Padrão de projeto é um relevante tema de pesquisa que tem sido empiricamente investi-

gado pela academia nos últimos anos. Entretanto, existe uma lacuna acerca da percepção

do uso dos padrões de projeto na prática. Este artigo visa preencher essa lacuna por meio

de uma análise de um cenário real brasileiro. Considerando que Belo Horizonte é uma

das principais cidades brasileiras no contexto de desenvolvimento de software, conduziu-se

um survey com 58 desenvolvedores de software ativos dessa cidade. Os resultados relatados

neste artigo mostram uma real percepção do uso de padrão de projeto neste importante polo

de desenvolvimento de software. Neste survey, identificou-se que padrões de projeto não

estão amplamente disseminados nas indústrias locais, uma vez que 40% dos participantes

afirmaram não utilizá-los frequentemente. Além disso, observou-se que a não aplicação de

padrões de projeto está principalmente associado à falta de conhecimento pelos desenvol-

vedores e à falta de incentivo das empresas. Por fim, foram discutidos alguns benefícios

apontados pelos participantes e listados os padrões de projeto mais usados e os menos usa-

dos pelos desenvolvedores.

Palavras-chave: Padrão de Projeto. Survey. Engenharia de Software.

∗Submetido em 15/02/2019 - Aceito em 17/03/2020
1MSc in Computer Science at Computer Science at Federal University of Minas Gerais. Bachelor degree in
Computer Science at the Federal Institute of Science, Technology and Education Southeast of Minas Gerais –
bruno.luan.sousa@dcc.ufmg.br

2MSc in Computer Science at Computer Science at Federal University of Minas Gerais. Bachelor degree in Com-
puter Science at Pontifical Catholic University of Minas Gerais – mivian.ferreira@dcc.ufmg.br

3Ph.D. in Computer Science at Pontifical Catholic University of Rio de Janeiro. MSc in Computer Science at
Computer Science at Federal University of Minas Gerais. Associate Professor of the Computer Science Department
at the Federal University of Minas Gerais – mariza@dcc.ufmg.br

4Ph.D. in Computer Science at Federal University of Minas Gerais. MSc in Computer Science at Computer Sci-
ence at Federal University of Minas Gerais. Professor of the Department of Computing at Federal Center for
Technological Education of Minas Gerais – kecia@decom.cefetmg.br

Design Patterns in Practice from the Point of View of Developers

Abstract

Design patterns are a relevant research topic that has been empirically investigated by

academia in the last years. However, there is still a gap in the perception of the use of

design patterns in practice. In this paper, we aim to bridge this gap by analyzing a real

Brazilian scenario. Considering that Belo Horizonte is one of the main Brazilian cities in

the context of software development, we decide to carry out a survey with 58 active devel-

opers from this city. The results exhibited in this paper bring a real perception of the use of

design patterns in a relevant center of software development. In this survey, we have identi-

fied that design patterns are not widely disseminated in the local industry since 40% of the

participants claimed do not frequently make use of them. We have also found that the lack

of use of design patterns is mainly associated with the lack of knowledge of these solutions

by the developers besides the absence of incentives from the companies. Moreover, we

discussed some benefits pointed out by the participants and listed the design patterns most

used and less used by the developers.

Keywords: Design Pattern. Survey. Software Engineering.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 21

Design Patterns in Practice from the Point of View of Developers

1 INTRODUCTION

Design patterns are general solutions applied to recurring problems in the context of
software design (GAMMA et al., 1994). They are recognized as good programming practices
since they encourage the use of structures composed by inheritance, composition, and polymor-
phisms to make the communication between flexible objects and to reduce the coupling between
modules. The most known and used design patterns are those described by the Gang of Four’s
(GoF) book (GAMMA et al., 1994).

Design patterns have been an important research topic in the Software Engineering in-
dustry and academia since 1994. Studies have pointed out the positive and negative aspects of
them. For instance, some studies have showed the efficiency of these techniques for improv-
ing the internal quality of systems (BECK et al., 1996; PRECHELT et al., 2001; KERIEVSKY,
2004; CHRISTOPOULOU et al., 2012; NAHAR; SAKIB, 2015, 2016; ZAFEIRIS et al., 2017).
Other studies (CARDOSO; FIGUEIREDO, 2015; JAAFAR et al., 2013, 2016; WALTER;
ALKHAEIR, 2016; SOUSA et al., 2017, 2018, 2019) have identified co-occurrence between
design patterns and complex structures called bad smells (FOWLER; BECK, 1999). Although
design patterns are well-known solutions, and they have been empirically investigated, there is
still a gap regarding the perception of the use of design patterns in real scenarios.

To bridge this gap, we surveyed 58 active developers from Brazil to identify the per-
ception of the use of GoF design patterns in a real scenario. Brazil is an essential country in
software development and has the 9th major software market in the world, with a domestic mar-
ket of US$ 18.6 billion (ABES, 2017). We chose Belo Horizonte as a real scenario because
it is one of the main Brazilian cities in the context of software development, with hundreds of
IT companies concentrated in it (AMARO, 2014; DANIELE, 2014). The results of our study
indicate the design patterns are not so widely disseminated in the industry since 40% of the
participants claimed do not frequently apply them. Analyzing these 40% participants’ answers,
we identified two types of developers: (i) the ones that do not often use design patterns because
they do not know them or have low knowledge on these techniques, and (ii) those that work
in companies that develop software for itself. Besides, they pointed out five main factors that
discourage them from using these solutions: lack of knowledge, lack of the incentive of the
companies, lack of documentation, overengineering and overthinking for adapting them to the
problem context, and lack of pre-defined test. We also identified the design patterns benefits,
and the ones most and least used by the developers.

The remainder of this paper is organized as follows. Section 2 provides a background
about design patterns and presents the ones most common in the literature. Section 3 presents
some related works. Section 4 presents the research questions and the method applied to carry
out this study. Section 5 presents an overview of the survey. Section 6 shows the results of this
study, answering the research questions. Section 7 shows the threats to validity and discusses
the main decisions to mitigate them. Section 8 concludes this paper with the final remarks and
indication of future work.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 22

Design Patterns in Practice from the Point of View of Developers

2 BACKGROUND

Design patterns were defined by Gamma et al. (1994) as descriptions of communica-
tions between classes and objects that are personalized to solve a general problem for a given
context. These solutions allow developing flexible and extensible software with a high level of
reuse. These structures are considered good programming practices since they improve software
comprehension.

Design patterns play an essential role in the software development process. According
to Cline (1996), one of the main advantages in the use of these solutions is the fact that they
coordinate the development process and act as a standard vocabulary of communication among
developers. Design patterns may be used as a type of documentation tool and help new devel-
opers of a team to understand the fragments of design from a software system. Besides, design
patterns increase software reliability since they consist of proven architectures and accumulated
experience.

On the other hand, the use of design patterns also provides some disadvantages for the
software development context. Cline (1996) point out that one of the main disadvantages of
the design patterns is the difficulty of learning them. Some design patterns are have a very
complex structure. Besides, the misuse of design patterns in the software development may
generate some problems, such as co-occurrences with bad smells, which make the software
structure more complex and increase the costs with refactoring and maintenance (JAAFAR et
al., 2013; CARDOSO; FIGUEIREDO, 2015; JAAFAR et al., 2016; WALTER; ALKHAEIR,
2016; SOUSA et al., 2017, 2019).

Although there are a lot of design patterns available in the literature, the most popular
were proposed by Gamma et al. (1994). They built a catalog composed of 23 design patterns,
which are known as Gang-of-Four (GoF). The design patterns introduced in this catalog are
classified into three different categories: creation, structural, and behavioral. We present a
description of each GoF category and design pattern as follows.

• Creation: it consists of abstracting the creation process of objects to create them in a
suitable manner to each situation.

– Abstract Factory: it provides an interface for creating a family of objects without
specifying their concrete classes.

– Builder: it separates creation and representation of a complex object, so that, dif-
ferent representations can be created during the object construction.

– Factory Method: it defines a single interface for creating objects, but postpones the
instantiation to the subclasses.

– Prototype: it specifies the types of objects to be created via prototypes instances
and creates new objects by copying the existing prototypes.

– Singleton: it defines a single class instance and provides a global point of access.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 23

Design Patterns in Practice from the Point of View of Developers

• Structural: it consists of identifying simple ways to define the relationships between
entities.

– Adapter: it converts classes interfaces so that incompatible interfaces work to-
gether.

– Bridge: it separates abstraction and implementation of the systems so that these two
parts can vary independently.

– Composite: it organizes objects in a hierarchy tree to represent part-whole. This
decision allows the objects to be treated uniformly and individually.

– Decorator: it allows to delegate additional features to objects dynamically.

– Facade: it provides a single interface for a set of interfaces in a subsystem.

– Flyweight: it uses data sharing to efficiently support large number of small objects.

– Proxy: it provides an object that controls the access to the features of a given object.

• Behavioral: this type of design patterns consists of attributing responsibility to the enti-
ties and facilitating the communication between objects.

– Chain of Responsibility: it defines a chain structure with objects to give an oppor-
tunity of more than one object treat a request.

– Command: it encapsulates a request as an object, allowing to parameterize a client
with different requests, log requests and support operations that can be undone.

– Interpreter: this design pattern defines a representation and use it to interpret sen-
tences of a given language of a grammar.

– Iterator: it consists of a way to sequentially access elements of an object, hiding its
structure.

– Mediator: it defines an object to encapsulate the way how a set of objects interact
one another.

– Memento: it captures and externalizes an internal state of an object so that it can be
restored to that state later.

– Observer: it defines an one-to-many dependency between objects so that when an
object changes, all its dependent objects are notified and updated.

– State: it allows the object to change its behavior when its internal state changes.

– Strategy: it defines a family of algorithms, encapsulates each one, and make them
interchangeable.

– Template Method: it defines a skeleton of an algorithm in a operation, postponing
some steps for subclasses.

– Visitor: it represents an operation to be run on the elements of an object structure.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 24

Design Patterns in Practice from the Point of View of Developers

3 RELATED WORK

This section provides an overview of some related works and discusses the main differ-
ences between them and the present work.

Design patterns emerged in 1994. Since then, many works have studied them in many
aspects. For instance, Wendorff (2001) investigated some negative impacts of design patterns in
software quality. They found that the lack of comprehension of design patterns and the wrong
choices are the main factors that decrease their structural quality. In the same line, McNatt
e Bieman (2001) and Izurieta e Bieman (2013) also identified some other factors that decay
the quality of these solutions. According to them, strongly connected and highly dependents
design patterns hinder the modularization of the system and increase the coupling in its internal
structure.

Khomh e Gueheneuce (2008) carried out a study more specific than Wendorff (2001),
McNatt e Bieman (2001) and Izurieta e Bieman (2013). They evaluated the impact of GoF
design patterns on some internal attributes, such as expansion, capacity, simplicity, reuse, learn-
ing, among others. They identified that design patterns do not always improve the quality of
these attributes and also pointed the Flyweight as the one that decreases the software quality.

Our study differs from the Wendorff (2001), McNatt e Bieman (2001), Khomh e Gue-
heneuce (2008), and Izurieta e Bieman (2013) because we have investigated the use of design
patterns in practice and found factors that inhibit the use of design patterns by analyzing opin-
ions of active developers and maintainers in the software industry.

The studies carried out by Wendorff (2001), McNatt e Bieman (2001), Khomh e Gue-
heneuce (2008) and Izurieta e Bieman (2013) encouraged other studies verifying the co-
occurrence between design patterns and bad smells. Bad smells are design problems and require
code refactoring (FOWLER; BECK, 1999). Many studies have investigated and identified co-
occurrences between GoF design patterns and bad smells (JAAFAR et al., 2013; CARDOSO;
FIGUEIREDO, 2015; JAAFAR et al., 2016; WALTER; ALKHAEIR, 2016; SOUSA et al.,
2017, 2019). According to them, design patterns do not avoid the occurrence of bad smells, and
the misuse of design patterns and the scattering and crosscutting concerns are the factors that
have caused these co-occurrences in the software.

A systematic literature mapping carried out by Sousa et al. (2018) also investigated
relations between design patterns and bad smells in the literature. They have identified that
the misuse or inappropriate design pattern application, misuse planning from the system, and
excessive assignment of functionality to the internal components from design patterns have
contributed to introducing co-occurrences between design patterns and bad smells. The studies
regarding co-occurrence between design patterns and bad smells have identified situations that
have helped to reduce the quality of design patterns. The present work aimed to contribute
to factors that inhibit the adoption of design patterns in the software development context in
practice. We have also analyzed their use in practice.

Finally, other studies have analyzed the benefits and inhibitors of design patterns adop-

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 25

Design Patterns in Practice from the Point of View of Developers

tion in software development activity. For instance, Cline (1996) studied the benefits and in-
hibitors of patterns application. He cataloged a total of seven benefits and three inhibitors and
discussed each one of them. Hahsler (2008) evaluated the use of design patterns in the context
of open source software developments. They analyzed the development process of almost 1,000
open source projects and concluded the adoption of design patterns in the open source context is
influenced by the projects’ profile and activity of the developers since projects with large team
and developers who create the most of the code are more likely to adopt design patterns. Riehle
(2011) analyzed the use of design patterns in large IT projects from three different compa-
nies and provides an interesting discussion of the contributions and benefits of these solutions.
Riehle (2011) indicates that design patterns play a crucial role in the design, implementation,
and documentation of the systems. Besides, design patterns benefit the evolution of the system
with a shared vocabulary that allows passing system information from a developer to another.
Zhang e Budgen (2013) evaluated which GoF design patterns are useful and not useful for soft-
ware developments by analyzing the opinions of researchers on design patterns. They identified
three useful design patterns: Abstract Factory, Composite, and Facade. Moreover, they pointed
out that Flyweight, Interpreter, Memento, and Prototype are those less useful.

Santos et al. (2016) investigated the benefits of design patterns and the factors that con-
tribute to their disuse. They identified the development process model, the lack of incentive
of companies, and the short time to deliver the product are the main factors that influence the
disuse of design patterns. The maintenance and code evolution, problem solution, and solu-
tion reuse are the main benefits provided by design patterns. Lano et al. (2018) investigated
the use of model transformation (MT) design patterns in practice. They concluded although
the use of MT design patterns is quite widespread, they have been used in an unconscious and
unsystematic way because they are incorporated in some languages. They also warn that the
documentation of MT design patterns and tool support need to be improved for this technique
turn more popular.

The main contribution of this paper, in comparison with the related works, is the evalua-
tion of the use of the GoF catalog in the real software development context. For instance, Cline
(1996), Riehle (2011) , and Santos et al. (2016) focused only in benefits and inhibitors. Hahsler
(2008), Zhang e Budgen (2013), and Lano et al. (2018) evaluated the use of design patterns and
those most used and least used. However, the context and the design patterns evaluated by them
are different from our study.

4 RESEARCH METHOD

According to Wohlin et al. (2012), a survey is “a kind of empirical strategy for collecting
information about people for describing, comparing or explaining their knowledge and behav-
ior”. This paper presents a study of the use of design patterns in the Brazilian scenario through
information from a set of active developers.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 26

Design Patterns in Practice from the Point of View of Developers

4.1 Research Questions

The research questions (RQn) to be analyzed are defined as follows.

RQ1: Have GoF design patterns been frequently applied in practice?

RQ2: When and why developers do not make use of design patterns?

RQ3: What are the main benefits of applying design patterns within a software project?

RQ4: Which GoF design patterns have been most used and least used by developers?

4.2 Design of the Survey

The questionnaire we constructed is based on a guideline defined by Kitchenham e
Pfleeger (2008) and divided it into five question blocks, which are described as follows.

Consent Term. The first block consists of a consent term to explain the purpose of
this survey for the participants and guarantee the anonymity of their answers. In this part, the
participants need to agree with the rules to advance to the other blocks.

Personal Information. In this block, the participants need to enter with their personal
information so that they can be identified. These participants’ data are essential for avoiding
duplicate answers and identifying developers that do not work in Belo Horizonte.

Background and Experience. This block aims to characterize the participants con-
cerning their background and professional experience. For this purpose, we defined closed
questions with options on the ordinal scale. These options refer to the characterization cate-
gories pre-defined by the authors.

Technical Block. This block collects technical information about the use of the design
pattern by the participants in their company. This part is where the participants indicate the
frequency that they apply design patterns, which design patterns they apply if these solutions
help or not them during the software development process, and the benefits and factors that
inhibit the use of these solutions in practice.

Final Block. The final block concludes the questionnaire with a comment for the partic-
ipants suggesting some improvements or justifying their answers. We also dedicate a space for
indications of email addresses from professionals that fit at the scope of this study. This block
is optional for the participants.

4.3 The Survey Form

The methodology established to design the questionnaire is composed of five steps. Ini-
tially, we created an initial version following the structure described in Section 4.2. After, we

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 27

Design Patterns in Practice from the Point of View of Developers

did an extensive review process where the questions and their options were intensely discussed
among the authors to remove ambiguities and keep the statement of the questions as clear as
possible.

Subsequently, we created a pilot questionnaire and asked for an active and expert devel-
oper to verify the clarity of the questions and the effectiveness of the options. We implemented
the hints provided by him and built the final questionnaire, which is composed of 14 ques-
tions divided into five blocks, as described in Section 4.2. Table 1 provides an overview of the
questionnaire.

The survey was implemented and managed via Google Forms5. We chose Google Forms
because it allows us to collect and organize information through online forms. Besides, Google
Forms is an open source, and it provides several resources to implement the questions, such as
radio buttons, scales, among others. For each item created, we defined text with some hints and
orientations to help the participants answer it and solve possible doubts.

4.4 Target Public

An essential element when we carried out a survey is to determine the population to be
investigated. In this survey, we defined our target public as being professionals that work with
software development and maintenance activities in companies from Belo Horizonte.

4.5 Participant Recruitment

We followed two approaches for recruiting participants. First, we created a list of known
professionals and sent an email with the link to the questionnaire for them. In the survey, we
made available a field where the respondents might indicate other developers. In this approach,
we invited 40 professionals, including the indications.

To increase the number of respondents, in the second approach, we recruited people by
posting the questionnaire on Facebook and disseminating it in a mailing list from UFMG and
CEFET-MG. UFMG and CEFET-MG are universities from Belo Horizonte and have a lot of
students who work in software development in companies.

5 SURVEY OVERVIEW

This section presents an overview of the process used in the survey and characterizes the
companies as well as the participants of it.

5<https://www.google.com/forms/about/>

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 28

Design Patterns in Practice from the Point of View of Developers

Table 1 – Overview of the questionnaire

Consent Term
1 Agreement with the consent term

Personal Information
2 Request for participant’s email (Open question. This question is mandatory.)
3 Request for company where the par-

ticipant currently works
(Open question. This question is mandatory.)

Background and Experience
4 Which is your degree? (Technical; Undergraduate; Graduate)
5 About your professional experience

in software development companies
how much time of experience do you
have?

(Up to 6 months of experience; Up to 1 year
of experience; From 1 to 3 years of experience;
More than 3 years of experience)

6 How do you evaluate your knowl-
edge on design patterns?

(None; Low; Moderate; Expert)

7 What is the work focus of the com-
pany where you work?

(Only development of systems for other compa-
nies; Development and maintenance of systems
for other companies; Development and mainte-
nance of systems used by the company itself;
Product development and maintenance; Other)

Technical Block
8 How often do you use design pat-

terns to develop a system within your
company?

(Never; Rarely; Usually; Always)

9 Which GoF design patterns have you
applied for developing a system in
your company?

(Each GoF design pattern was made available as
an option. The participant might to check one or
more option.)

10 Do you believe that design patterns
provide any benefits in the software
development process?

(Do not Help; Little Help; Fairly Help; Help a
lot)

11 What are the main benefits provided
by the design patterns in the software
development process?

(Allows code reuse; Favor the comprehension of
the system internal structure and the communi-
cation between developers; Allow greater system
flexibility and ease of integration of new features;
Favor future maintenance; Decrease the cost/ef-
fort in the development process; None; Other)

12 What are the main factors that inhibit
the use of design patterns where you
work?

(Lack of knowledge on these solutions; Pressure
to deliver the product in a short time; Lack of
planning from the development process; Unde-
fined development process model; Complexity in
learning these solutions; Low or missing avail-
ability of these solutions for some programming
languages; Lack of domain in the used program-
ming language; None; Other)

Final Block
13 Comment section (Open question. This question is optional.)
14 Indication of other people (Open question. This question is optional.)

Source: Elaborated by the authors.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 29

Design Patterns in Practice from the Point of View of Developers

5.1 General Overview

This survey was available from May 14th, 2018 to June 11st, 2018. In total, 62 devel-
opers answered the questionnaire being 20 of them contacted by the first recruitment approach,
and 42 respondents by the second approach. Considering the first approach, we obtained 50%
answer rate. For the second approach, we were not able to compute the answer rate since we
do not have access to the number of subscribed in the mailing list, and it was not possible to
calculate the number of people that our post reached on Facebook.

As we used social networks to recruit participants, we had to carry out a manual inspec-
tion of the participants’ personal information to remove answers that could negatively impair the
results of this survey. We sought for: duplicated answers, inactive developers or maintainers,
and professionals from other cities. We described the steps of this inspection as follows.

Duplicated Answers. This step consists of analyzing the collected data and removing
duplicated answers. We verified the email address in each one of 62 responses and identified
three participants who answered the questionnaire twice. We discussed these cases and decided
to keep the most recent answer from them. Therefore, after this step, we obtained 59 responses.

Inactive Professionals. This step aims to remove answers from developers that are not
working with software development or maintenance. We analyzed the affiliations’ names of
each one of the 59 respondents. One of them claimed he is not working. So, we removed his
data from this study and remained 58 answers.

Professionals from Other Cities. This step aims to remove the answers of professionals
outside of Belo Horizonte. Here, we checked the name of the participants’ affiliation again. We
did not identify cases to be removed. This step remains with 58 responses.

In summary, steps 1, 2, and 3 received as input, in this order, 62, 59, and 58 answers
from participants. At the end of these steps, we removed four records resulting in a total of 58
responses. We analyzed and summarized them to answer the research questions.

5.2 Companies Overview

One of the questions in the personal information block asked about the current par-
ticipants’ affiliation. To provide an overview of the respondents, we classified the companies
according to their available size on LinkedIn6. We chose LinkedIn because it is a business social
network with thousands of companies registered and a large variety of information about them.
Figure 1 shows the distribution of the participants according to their company size.

Each classification had at least one affiliation regarding it. The most common companies
have from 11 to 50 employees. Some companies were reported more than once since there are
participants who work in the same companies. So, we summarized all affiliations only once in
Figure 1, and therefore, 58 participants represented 47 companies. Although we have obtained

6<www.linkedin.com>

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 30

Design Patterns in Practice from the Point of View of Developers

Figure 1 – Distribution of the companies size

4

14

10

5

1

6

1

6

0

5

10

15

2−10
11−50

51−200

201−500

501−1,000

1,001−5,000

5,001−10,000

More than 10,001

Number of Employees

N
um

be
r

of
 C

om
pa

ni
es

Source: Elaborated by the authors.

information regarding the developers of several companies, it is important to highlight that the
focus of this paper is to analyze the view of developers regarding the use of design patterns in
practice.

5.3 Participants’ Background and Experience

The third block aimed to collect information about the participants’ background and
experience to characterize them. The first question asked about the education degree of each
respondent. To answer this question, the respondent should choose one of the following options:
(i) Technical, (ii) Undergraduate, and (iii) Graduate.

The technical degree is a type of professional education existing in the Brazilian educa-
tional level that is offered to students who are enrolled or have finished high school. This degree
aims to provide technical qualification at the high school according to the professional profile
chosen, and therefore, allow quick integration of the student into the job market (SENAI, 2013).

This study was carried out with graduate and undergraduate professionals. They corre-
spond to 52% and 46% of our population, respectively. We also obtained an answer from one
technical professional who represents 2%.

To evaluate the participants’ professional experience, we asked them to inform the time
of experience with software development or maintenance through the options previously pro-
vided. Most of the participants in this survey, 74%, are expert professional with more than
three years working in software companies. We also had some participants, 7%, that claimed
to be at the beginning of their career. The remainder of our population answered to have “up to
one year of experience”, and “from one to three years of experience” representing 3% and 16%

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 31

Design Patterns in Practice from the Point of View of Developers

respectively. Figure 2 shows the distribution of the participants’ professional experience.

Figure 2 – Participants’ level of professional experience

Source: Elaborated by the authors.

Finally, we characterized the participants regarding their knowledge of design patterns,
asking them how they classify their knowledge of these techniques. Most of the population,
72%, reported to have a moderate knowledge or to be an expert on design patterns. However,
a significant part of the participants, 28%, reported to have low or none k nowledge. Figure 3
summarizes these information.

Figure 3 – Participants’ knowledge level on design patterns

2

14

29

13

0

10

20

30

None Low Moderate Expert
Level

N
um

be
r

of
 P

ar
tic

ip
an

ts

Source: Elaborated by the authors.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 32

Design Patterns in Practice from the Point of View of Developers

6 RESULTS

This section presents the results and answers the research questions.

RQ1: Have GoF design patterns been frequently applied in practice?

With the RQ1, we aim to analyze the current use of the GoF design patterns in software
companies and verify if they have been frequently applied in software development. So, to
answer this research question, we asked the participants the following question: “How often do
you use the GoF design patterns to develop software in your company?”. We summarized the
answers in Figure 4.

Figure 4 – Frequency of the use of design pattern by participants

6

17

22

13

0

5

10

15

20

Never Rarely Usually Always
Frequency

N
um

be
r

of
 P

ar
tic

ip
an

ts

Source: Elaborated by the authors.

Summary of RQ1. We identified that most of the participants, 60%, know and have
frequently applied GoF design patterns during the software development. However, a high rate
of our population, 40%, claimed that rarely or never had used these techniques. This insight
indicates that although design patterns have been pointed out as good programming practices
and their use have been encouraged, they are not widely disseminated in the software industry.

RQ2: When and why developers do not make use of design patterns?

With the RQ2, we aim to identify the profile of the participants that do not apply design
patterns and find out the reasons that inhibit this disuse. To answer this question, we analyzed
only answers from the participants that rarely or never used design patterns during software
development or maintenance activities. Therefore, in this research question, we examined a
total of 23 participants’ answers.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 33

Design Patterns in Practice from the Point of View of Developers

Out of the 23 participants’ answers analyzed in this research question, 52% of the partic-
ipants do not know them or have low knowledge of them. This result shows a lack of knowledge
on design patterns is one of the main factors that inhibit their use. It also reinforces the fact that
design patterns are not so well disseminated in the software industry, as some studies have
pointed out (SPEICHER, 2013; WAGEY et al., 2015). Moreover, we may conclude that it is
mandatory to improve the teaching of design patterns in undergraduate courses to disseminate
them in the software industry.

Besides, we identify that the profile of the software development activity in a company
might influence the use of design patterns. For instance, companies that develop software for
their use tend not to apply design patterns. In contrast, companies that build and maintain
software for other companies tend to use design patterns.

We also analyze if the development process adopted by the companies has influenced the
use of design patterns in the practice. The participants’ answers reported seven different types
of the development process. They are: Waterfall, Extreme Programming (XP), Iterative and
Incremental, Kanban, Scrum, Mix of Scrum/Waterfall, and Scrum with DevOps. Besides, some
participants have indicated that their company does not have a well-defined model, and others
claimed that the process changes among projects. We confronted the participants’ answers
about the development process with the information of frequency of use of design patterns. We
did not identify any pattern that indicates an influence of the development process model used
by the company on the use of design patterns.

Regarding the reasons that make them inhibit the use of design patterns, they reported:
pressure to deliver the product in a short time, lack of planning from development activity, and
undefined development process model are the main factors responsible for this inhibition. These
factors reflect an absence of incentives from companies concerning the use of design patterns.
One participant highlighted that the implementation of design patterns demands time to create
the solutions and increase costs for the companies that are rarely willing to pay for these costs.

Another factor pointed out by the participants is the lack of documentation of the sys-
tems, mainly because the specification is an essential step in the software development process.
According to the participants, most companies do not document their systems. This lack of doc-
umentation turns the comprehension of the internal software structure difficult and may induce
the developer not to use design patterns and introduce complex structures in the systems.

Some participants highlighted that design patterns require an overengineering and time
studying how to adapt the solutions so that they fit into the problem context. This situation turns
the developer less productive. Besides, even with the high dedication of the developer, there is
a risk of implementing the design pattern wrongly. The lack of predefined tests to verify and
validate them in the development process also discourages developers to apply design patterns
since, in their conception, design patterns are complex and hard to implement, and may impair
the code comprehension.

Summary of RQ2. We conclude that most of the developers that do not apply design
patterns are those who do not know or have low knowledge of these solutions. The profile of

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 34

Design Patterns in Practice from the Point of View of Developers

software development activity also influences their u se. Regarding to the reasons that impact
this disuse, the main factors reported by the participants were: (i) lack of the incentive of the
companies to use these solutions, (ii) lack of documentation for the systems, (iii) overengineer-
ing and overthinking for adapting them to the problem context, and (iv) lack of pre-defined test
to verify and validate their implementations.

RQ3: What are the main benefits of applying design patterns within a software project?

With the RQ3, we aim to identify the benefits provided by the use of design patterns
in software development. To answer this question, we considered only responses from the
participants that claimed to have moderate knowledge or be an expert professional on design
patterns.

Table 2 summarizes the benefits. By the participants’ answers, we may conclude that:
(i) flexibility in future maintenance, (ii) the improvement at the legibility and communication
between developers, and (iii) the code reuse are practically common sense between the profes-
sionals in the software industry since more than 75% of the participants indicated these three
factors as benefits of the use of design patterns. Some developers also pointed out that the flex-
ibility and ease of including new features in software during its life cycle is another important
benefit. Another important benefit indicated by the participants was the cost/effort reduction
in the development process. According to the participants, design patterns demand costs, and
programming efforts during the development of the software. However, these costs and pro-
gramming efforts tend to decay during the life cycle of the systems. Considering that most
software life cycle consists of maintenance and enhancement (WAGEY et al., 2015), the use
of design patterns may be a good strategy for companies to reduce their costs with software
development.

Table 2 – Benefits provided by design patterns

Benefit # Answers
Facilitate future maintanance 33
Favor the code comprehension and
internal structure of the system and
the communication between devel-
opers

33

Allow code reuse 32
Allow greater system flexibility and
ease of integration of new features

27

Decrease the cost/effort in the de-
velopment process

16

Other 3

Source: Elaborated by the authors.

The participants reported other benefits brought by design patterns. One of them is the
practicality in solving recurring problems since they act as a starting point to model a solution

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 35

Design Patterns in Practice from the Point of View of Developers

to the approached problem. They also work as implicit documentation in software because the
developer builds the internal structure of the software based on the solution documented in the
literature. Finally, one participant reported that deficiencies in some programming languages
make it difficult to create solutions for some problems. So, design patterns may act as an
additional artifice and help developers to create exciting solutions for these problems.

Summary of RQ3. Table 2 answers this research question. It shows the flexibility in
future maintenance, the improvement at the legibility and communication between developers,
and code reuse are practically common sense among the developers. Also, the use of the design
pattern favors the inclusion of the new feature in the software and decrease the cost and effort
during the maintenance phase. Finally, the participants pointed out some additional benefits.
They reported design patterns to act as a starting point to solve common problems, act as implicit
documentation in software, and may act as an additional artifice and help developers avoid
deficiencies from some programming languages.

RQ4: Which GoF design patterns have been most used and least used by developers?

With the RQ4, we aim to identify the GoF design patterns most used and least used
in practice. To answer this research question, we asked the participants: “Which GoF design
patterns have you applied for developing software in your company?”, and made available the
GoF design patterns as options. They could choose more than one design pattern. Table 3
summarizes the participants’ answers.

The Singleton was the most cited by the participants, 67%. This result shows it is a
significant design pattern and has helped developers to create efficient solutions while solving
problems. Moreover, we identified that the three of the five design patterns most used, Sin-
gleton, Factory Method, and Abstract Factory, are classified as creation. This result shows the
most concern of the developers to develop software is abstract the process of creating objects to
make it flexible and facilitate the inclusion of new features during the software life cycle.

Summary of RQ4. Table 3 answers this research question. The five design patterns
most used are Singleton, Factory Method, Observer, Abstract Factory, and Facade. In contrast,
the five design patterns least used are Flyweight, Visitor, Memento, Interpreter, and Bridge. We
also identified a high rejection regarding the Flyweight design pattern, since any participant did
not mention it.

7 THREATS TO VALIDITY

This section discusses some threats to validity based on Wohlin et al. (2012).
Internal Validity. We collected data via a questionnaire. One of the drawbacks of

surveys is that inconsistencies are only revealed after the data collection period, and this fact
may represent a threat to validity. To mitigate it, after collecting the data, we manually inspected
the answers to remove inconsistencies and responses that did not fit on the scope of our study.
Each found inconsistency was discussed among the authors before deleting it.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 36

Design Patterns in Practice from the Point of View of Developers

Table 3 – Design patterns most used by participants.

Design Pattern # Answers % Use
Singleton 39 67%
Factory Method 26 45%
Observer 23 40%
Abstract Factory 22 38%
Facade 21 36%
Iterator 19 33%
Builder 18 31%
Adapter 17 29%
Decorator 16 28%
Chain of Responsibility 13 22%
Proxy 13 22%
Template Method 13 22%
Composite 12 21%
Strategy 12 21%
Prototype 7 12%
Command 6 10%
Mediator 6 10%
State 5 9%
Bridge 4 7%
Interpreter 3 5%
Memento 3 5%
Visitor 2 3%
Flyweight 0 0%

Source: Elaborated by the authors.

To characterize the companies, we classify each one concerning their number of em-
ployees. This classification may impact the results because of the classification scheme and
process. To mitigate this threat, we used a classification scheme of a significant business social
network called LinkedIn, which also provides information about the classification of the com-
panies’ size. Since LinkedIn are continually updating their information on companies’ size, we
decided to use these data to characterize the companies identified in this survey.

We use social networks to find developers and increase the number of participants in
our survey. However, using social networks may bias our results, since we miss the control of
the population. To mitigate this threat, we proposed two approaches for recruiting participants.
Initially, we obtained a controlled sample with developers who we sent the survey via email.
After that, we used Facebook and mailing lists to disseminate our survey. We based on the
participants’ answers to validate their profile and remove the ones that did not fit into our study.

One confounding variable is the comprehension of the questions when the participants
are answering the questionnaire. To ensure well comprehension, we carefully reviewed all
questions to remove the ambiguities. We also created a pilot questionnaire and asked an expert
professional to validate the clarity of the questions and the effectiveness of the options. Finally,
we introduced a brief text in each question with some hints and descriptions about its focus.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 37

Design Patterns in Practice from the Point of View of Developers

External Validity. Although we had a large number of participants with different back-
grounds, we may not generalize our results since this survey is limited to developers from Belo
Horizonte. However, the found results are important and reveal the reality regarding the use of
design patterns in companies from a relevant center of software development. Such findings
support to propose solutions for improving the use of design patterns in similar scenarios.

Construct Validity. The creation of the questionnaire needs to be well defined to re-
move ambiguities. So, we have used an extensive methodology for reviewing the questionnaire
items. The subjects were initially discussed by the authors to validate their clarity, and after that,
we have requested an active developer for validating it too. We have considered the feedback
provided by the professional and based on them to improve our questionnaire and mitigate this
threat.

Conclusion Validity. Most questions we have created in the questionnaire were closed
questions. This decision may be considered a threat to validity because it may influence the
participants’ answers. To mitigate it, we have performed an exhaustive discussion to create
options that best reflect the industry reality. Moreover, we have created an open option in some
questions to allow the participants to expose other opinions and factors that were not made
available as options.

8 CONCLUSION

This paper aimed to identify the perception of Brazilian developers on the use of the
GoF design patterns in practice. We collect information from the participants via a question-
naire regarding the research questions. We analyzed answers from 58 active developers and
maintainers from Belo Horizonte.

Initially, we have identified that the design patterns are not widely disseminated in the
companies of this relevant Brazilian center of software development since 40% of the partici-
pants in this survey claimed not frequently apply design patterns in the software development
process inside their affiliations. The main reason pointed out to justify this disuse was the
lack of knowledge of design patterns. This fact indicates that the teaching of design patterns
need to be improved in undergraduate courses. They also pointed out the lack of incentive of
the companies, the lack of documentation, overengineering and overthinking for adapting de-
sign patterns to the problem context, and lack of the pre-defined test to verify and validate the
correctness of the implementation, as other factors that discourage them from using these solu-
tions. Although 40% of the participants do not frequently use design patterns, all participants
believe these solutions bring some benefits. Benefits as code reuse, improvement at the legibil-
ity and communication between developers, and flexibility in future maintenance are practically
common sense among the participants. Advantages as favors the inclusion of the new feature,
decrease cost and effort during the maintenance phase, practicality in solving common prob-
lems, documentation implicit, and additional artifice that help to supplement deficiencies from

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 38

Design Patterns in Practice from the Point of View of Developers

programming language are other benefits indicated by the participants that may encourage the
use of these techniques in practice. Finally, we identified the design patterns most used and
least used for developers. The five design patterns most used are Singleton, Factory Method,
Observer, Abstract Factory, and Facade. And the five design patterns least used are Flyweight,
Visitor, Memento, Interpreter, and Bridge.

Therefore, we can summarize the main contributions of this paper as follows:

• The use of design patterns is not widespread in a relevant Brazilian center of software
engineering.

• Most of the developers that do not apply design patterns are those who do not know or
have low knowledge of these solutions. Besides, situations as lack of the incentive of the
companies to use these solutions, lack of documentation for the systems, overengineering
and overthinking for adapting them to the problem context, and lack of a pre-defined test
to verify and validate their implementations are also factors that contribute for the disuse
of the design patterns in practice.

• The main benefits provided by the design patterns in practice are flexibility in future
maintenance, improvement at the legibility and communication between developers, code
reuse, ease in the inclusion of the new feature in the software, and cost and effort reduction
in maintenance activities. Besides, design patterns act as a starting point to solve common
problems, work as implicit documentation in software, and serve as an additional resource
helping developers to avoid deficiencies from some programming languages.

• Singleton, Factory Method, Observer, Abstract Factory, and Facade are the design pat-
terns most used by Brazilian developers in practice. In contrast, Flyweight, Visitor, Me-
mento, Interpreter, and Bridge are the design patterns least used.

As future works, it is important to (i) extend this research for other scenarios and Brazil-
ian cities to depict the use of design pattern in the Brazilian scenario as a whole; (ii) investigate
if software process certification is a factor that encourages developers and companies to apply
design patterns during the software development; and (iii) build a tool for helping developers to
implement design patterns automatically in practice.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 39

Design Patterns in Practice from the Point of View of Developers

References

ABES. Brazilian Software Market: Scenario and trends. São Paulo, 2017. 28 p. (In por-
tuguese).

AMARO, M. Do you know the São Pedro Vallery in Belo Horizonte? April Publisher. 2014.
Available at: https://exame.abril.com.br/carreira/conhece-o-bairro-de-sao-pedro/. Accessed on
July, 2018. (In portuguese).

BECK, K. et al. Industrial experience with design patterns. In: INTERNATIONAL CONFER-
ENCE ON SOFTWARE ENGINEERING, 18., 1996, Berlin. Proceedings [...]. Berlin: IEEE,
1996. p. 103–114.

CARDOSO, B.; FIGUEIREDO, E. Co-occurrence of design patterns and bad smells in soft-
ware systems: An exploratory study. In: BRAZILIAN SYMPOSIUM ON INFORMATION
SYSTEMS, 11., 2015, Goiania. Proceedings [...]. Goiania: SBC, 2015. p. 347–354.

CHRISTOPOULOU, A. et al. Automated refactoring to the strategy design pattern. Informa-
tion and Software Technology, v. 54, n. 11, p. 1202–1214, nov. 2012.

CLINE, M. The pros and cons of adopting and applying design patterns in the real world.
Communications of the ACM, New York, v. 39, n. 10, p. 47–49, oct. 1996.

DANIELE, A. Top 10 Brazilian cities that hire IT professionals. April Publisher. 2014.
Available at: https://exame.abril.com.br/carreira/as-10-cidades-do-pais-que-mais-contratam-
profissionais-de-ti/. Accessed on July, 2018. (In portuguese).

FOWLER, M.; BECK, K. Refactoring: Improving the Design of Existing Code. 1. ed.
Boston: Addison-Wesley Professional, 1999.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-oriented Software. 1. ed.
Boston: Addison-Wesley Professional, 1994.

HAHSLER, M. A quantitative study of the adoption of design patterns by open source software
developers. In: TAN, F. (Ed.). Global Information Technologies: Concepts, methodologies,
tools, and applications. 1. ed. Pennsylvania: Igi Global, 2008. p. 560–577.

IZURIETA, C.; BIEMAN, J. A multiple case study of design pattern decay, grime, and rot in
evolving software systems. Software Quality Journal, v. 21, n. 2, p. 289–323, feb. 2013.

JAAFAR, F. et al. Analysing anti-patterns static relationships with design patterns. Electronic
Communications of the EASST, Berlin, v. 59, n. 1, p. 1–26, 2013.

JAAFAR, F. et al. Evaluating the impact of design pattern and anti-pattern dependencies on
changes and faults. Empirical Software Engineering, v. 21, p. 896–931, mar. 2016.

KERIEVSKY, J. Refactoring to Patterns. Boston: Pearson Higher Education, 2004.

KHOMH, F.; GUEHENEUCE, Y. Do design patterns impact software quality positively? In:
EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING,
12., 2008, Athens. Proceedings [...]. Athens: IEEE, 2008. p. 347–354.

KITCHENHAM, B.; PFLEEGER, S. Personal opinion surveys. In: SHULL, F.; SINGER, J.;
SJØBERG, D. (Ed.). Guide to advanced empirical software engineering. 1. ed. London:
Springer, 2008. p. 63–92.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 40

Design Patterns in Practice from the Point of View of Developers

LANO, K. et al. A survey of model transformation design patterns in practice. Journal of
Systems and Software, v. 140, p. 48–73, jun. 2018.

MCNATT, W.; BIEMAN, J. Coupling of design patterns: Common practices and their benefits.
In: INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE
ON INVIGORATING SOFTWARE DEVELOPMENT, 25., 2001, Chicago. Proceedings [...].
Chicago: IEEE, 2001. p. 574–579.

NAHAR, N.; SAKIB, K. Automatic recommendation of software design patterns using anti-
patterns in the design phase: A case study on abstract factory. In: CEUR WORKSHOP, 3.,
2015, New Delhi. Proceedings [...]. New Delhi: CEUR, 2015. p. 9–16.

NAHAR, N.; SAKIB, K. Acdpr: A recommendation system for the creational design patterns
using anti-patterns. In: INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS,
EVOLUTION, AND REENGINEERING, 23., 2016, Suita. Proceedings [...]. Suita: IEEE,
2016. p. 4–7.

PRECHELT, L. et al. A controlled experiment in maintenance comparing design patterns to
simpler solutions. IEEE Trans. Softw. Eng., Piscataway, v. 27, n. 12, p. 1134–1144, dec. 2001.

RIEHLE, D. Lessons learned from using design patterns in industry projects. In: NOBLE, J. et
al. (Ed.). Transactions on pattern languages of programming II: Special issue on applying
patterns. 1. ed. Berlin: Springer, 2011. p. 1–15.

SANTOS, M.; SOUZA, M.; FIGUEIREDO, E. Design patterns in java: A practical study on
their use and benefits. In: WORKSHOP ON SOCIAL, HUMAN AND ECONOMIC ASPECTS
OF SOFTWARE, 1., 2016, Maceió. Proceedings [...]. Maceió: SBC, 2016. p. 31–40. (In por-
tuguese).

SENAI. Technical of High School. 2013. Available at:
https://www.senaiac.org.br/index.php/educacao/tecnico-de-nivel-medio.html. Accessed on
January, 2019 (In portuguese).

SOUSA, B.; BIGONHA, M.; FERREIRA, K. Evaluating co-occurrence of gof design patterns
with god class and long method bad smells. In: BRAZILIAN SYMPOSIUM ON INFORMA-
TION SYSTEMS, 13., 2017, Lavras. Proceedings [...]. Lavras: SBC, 2017. p. 396–403.

SOUSA, B.; BIGONHA, M.; FERREIRA, K. A systematic literature mapping on the relation-
ship between design patterns and bad smells. In: ACM SYMPOSIUM ON APPLIED COM-
PUTING, 33., 2018, Pau. Proceedings [...]. Pau: ACM, 2018. p. 1528–1535.

SOUSA, B.; BIGONHA, M.; FERREIRA, K. An exploratory study on cooccurrence of design
patterns and bad smells using software metrics. Software: Practice and Experience, v. 48,
n. 7, p. 1079–1113, may 2019.

SPEICHER, D. Code quality cultivation. Communications in Computer and Information
Science, Berlin, v. 348, p. 334–349, 2013.

WAGEY, B.; HENDRADJAYA, B.; MARDIYANTO, M. A proposal of software maintainabil-
ity model using code smell measurement. In: INTERNATIONAL CONFERENCE ON DATA
AND SOFTWARE ENGINEERING, 2., 2015, Yogyakarta. Proceedings [...]. Yogyakarta:
IEEE, 2015. p. 25–30.

WALTER, B.; ALKHAEIR, T. The relationship between design patterns and code smells: An
exploratory study. Information and Software Technology, v. 74, p. 127–142, jan. 2016.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 41

Design Patterns in Practice from the Point of View of Developers

WENDORFF, P. Assessment of design patterns during software reengineering: Lessons learned
from a large commercial project. In: EUROPEAN CONFERENCE ON SOFTWARE MAIN-
TENANCE AND REENGINEERING, 5., 2001, Lisbon. Proceedings [...]. Lisbon: IEEE, 2001.
p. 77–84.

WOHLIN, C. et al. Experimentation in Software Engineering. 1. ed. Berlin: Springer, 2012.

ZAFEIRIS, V. et al. Automated refactoring of super-class method invocations to the template
method design pattern. Information and Software Technology, v. 82, p. 19–35, feb 2017.

ZHANG, C.; BUDGEN, D. A survey of experienced user perceptions about software design
patterns. Information and Software Technology, v. 55, n. 5, p. 822–835, may 2013.

Abakos, Belo Horizonte, v. 8, n. 1, p. 20-42, maio 2020 – ISSN: 2316-9451 42

