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Abstract

Autonomous Mobile Robots (AMR) are increasingly used in various indoor settings, such
as offices, hospitals, production lines, and industrial cargo transportation, to address spe-
cific challenges. However, the dynamic and intricate nature of these environments presents
significant challenges for the development of indoor AMRs aimed at environment map-
ping. This article presents the results of a systematic mapping of the literature on scientific
productions related to the development of indoor AMRs for environment mapping, based
on research conducted in three major databases: ACM, IEEE, and Science Direct. The
results reveal the main challenges in this context, particularly in terms of autonomous nav-
igation, localization, Simultaneous Localization and Mapping (SLAM), sensor selection
and integration, and map generation. In addition to these challenges, the article presents
an overview of the primary algorithms and strategies for efficient SLAM and reliable map-
ping, as well as the main controllers, sensors, and peripherals employed in development.
Lastly, strategies for energy saving in AMRs are also examined - an important but under-
explored area, with few studies addressing it. By covering a broad range of techniques and
technologies, this article contributes a comprehensive foundation for future research and
development in the field of indoor AMRs.
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Resumo

Robds Méveis Autdbnomos (AMR, do inglés Autonomous Mobile Robots) sao cada vez
mais utilizados em diversos ambientes indoor, como escritérios, hospitais, linhas de pro-
ducdo e transporte de carga industrial, para enfrentar desafios especificos. No entanto, a
natureza dindmica e complexa desses ambientes apresenta desafios significativos para o
desenvolvimento de AMRs voltados ao mapeamento de ambientes. Diante desse contexto,
este artigo apresenta os resultados de um mapeamento sistematico da literatura sobre pro-
dugdes cientificas relacionadas ao desenvolvimento de AMRs indoor para mapeamento de
ambientes, com base em pesquisas realizadas em trés grandes bases de dados: ACM, IEEE
e Science Direct. Os resultados revelam os principais desafios encontrados nesse con-
texto, especialmente no que diz respeito a navegagdo autdnoma, localizac¢do, Localizagdo
e Mapeamento Simultdneos (SLAM, do inglés Simultaneous Localization and Mapping),
selecdo e integracdo de sensores e geragdo de mapas. Além desses desafios, o artigo apre-
senta uma visdo geral dos principais algoritmos e estratégias para SLAM eficiente e mape-
amento confidvel, bem como dos principais controladores, sensores e periféricos utilizados
no desenvolvimento. Por fim, também foram analisadas estratégias voltadas a economia
de energia em AMRs, uma drea importante, porém pouco explorada, com poucos estudos
abordando esse tema. Ao abordar um amplo conjunto de técnicas e tecnologias, este artigo
oferece uma base abrangente para futuras pesquisas e desenvolvimentos na drea de AMRs
indoor.

Palavras-chave: Robds Moveis Auténomos (AMR). Localizagdo e Mapeamento Si-
multineos (SLAM). Ambiente indoor.

Abakdés, Belo Horizonte, v.13, n.2, €2025130202, Ago./Nov. 2025 - ISSN: 2316-9451



Indoor Autonomous Mobile Robot for Environment Mapping: a Systematic Mapping of the Literature

1 INTRODUCTION

Autonomous Mobile Robots (AMRSs) are increasingly employed in indoor environments
such as offices, hospitals, production lines, and facilities for industrial cargo handling. These
robots offer a viable alternative for tackling various operational challenges across these do-
mains, primarily due to their capability for continuous operation, which enhances the overall
system efficiency (Mota et al., 2018; Junior et al., 2021). According to Junior et al. (2021), the
global robotics market is expected to exceed $50 billion annually.

The autonomous navigation of AMRs relies on addressing complex tasks such as map-
ping, planning, obstacle avoidance, orientation, and localization, functions that are predomi-
nantly handled through Simultaneous Localization and Mapping (SLAM) techniques (Alatise;
Hancke, 2020).

Despite extensive research in SLAM, indoor environments still present significant ob-
stacles due to their dynamic nature, structural complexity, and the use of imprecise sensors
(Junior et al., 2021). For instance, the presence of moving objects can cause SLAM systems to
diverge if such objects are incorrectly integrated into the generated map (Inofuente-colque et
al.,2021). As observed by Zhang et al. (Yasuda; Martins; Cappabianco, 2020), there is still no
fully successful vision-only autonomous navigation system for dynamic indoor settings.

Given the technical challenges and the increasing demand for indoor automation, it
is essential to study and synthesize findings from existing literature to support and guide the
development of future AMR systems in these environments.

In this context, systematic mapping is adopted as a suitable methodology to identify, or-
ganize, and analyze all relevant studies addressing a defined research question. This approach
provides a high-level overview of the research landscape, revealing trends, evidence availabil-
ity, and research gaps in the field (Soares; Nobre; Freitas, 2019).

This study conducts a systematic mapping of the literature specifically focused on the
development of indoor AMRs for environment mapping. The selected studies were retrieved
from the Association for Computing Machinery (ACM), Institute of Electrical and Electronics
Engineers (IEEE), and Science Direct databases. These repositories were chosen for their high
relevance in computing and engineering fields, as well as for their broad coverage of impactful
publications on robotics.

The mapping aims to address the following questions: (i) What are the primary chal-
lenges in developing indoor AMRs? (ii) What algorithms and strategies are used for au-
tonomous navigation, localization, and reliable environment mapping? (iii) What hardware
components - such as microcontrollers, minicomputers, sensors, actuators, and peripherals -
are employed? and (iv) What strategies are adopted to enhance energy efficiency in AMRs?

The remainder of this paper is organized as follows: Section 2 presents related works.
Section 3 details the systematic mapping methodology, including the research questions and

article selection process. Section 4 presents the findings and discussions. Finally, Section 5
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concludes the study and proposes future research directions.

2 RELATED WORK

According to Yasuda, Martins e Cappabianco (2020), despite the existence of several
autonomous navigation systems, no solution based exclusively on vision has yet proven fully
successful in dynamic indoor environments. Yasuda, Martins e Cappabianco (2020) presented
a systematic mapping of techniques and methods for autonomous navigation of mobile robots
in indoor settings, covering localization, mapping, trajectory planning, and locomotion. How-
ever, their analysis focuses primarily on vision-based methods and includes 121 papers pub-
lished between 2000 and 2017. The results indicate deficiencies in method validation, vague
requirement specifications, and the absence of complete autonomous navigation systems.

Unlike that study, which was limited to vision-based methods and constrained to an
earlier time window, our research adopts a broader approach to investigate diverse technological
aspects of indoor AMRs, including hardware architecture, navigation algorithms, and energy
strategies.

Niloy et al. (2021) offers practical guidance for assembling AMRs, addressing critical
aspects such as locomotion, perception, localization, mapping, motion tracking, and dynamic
navigation. These elements are analyzed through mathematical modeling, control strategies,
and implementation challenges, while also exploring prominent algorithms and future direc-
tions for AMR development.

Fragapane et al. (2021) focuses on the planning and control of AMRs in intralogistics
environments, including manufacturing, storage, and healthcare facilities. The authors propose
a structured framework to support managerial decision-making in the deployment of AMRs.

In a separate study, Panigrahi e Bisoy (2022) emphasizes localization as a core require-
ment for AMR deployment. Their systematic mapping addresses key localization principles,
challenges, and strategies, including RFID-based positioning and error analysis, with sugges-
tions for future research directions.

In the context of Industry 5.0, where collaboration between humans and machines is
emphasized, Farooq, Eizad e Bae (2023) reviews various energy solutions applied to commer-
cially available terrestrial AMRs. The paper compares techniques and provides insights into
selecting appropriate energy sources based on operational requirements.

Although several works explore individual aspects such as navigation, localization, and
energy efficiency, no recent study has conducted a comprehensive systematic mapping focused
on the overall development of indoor AMRs for environment mapping. This research aims to
fill that gap by analyzing a broad set of contributions spanning algorithms, hardware platforms,

and resource-efficient strategies.
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3 METHOD

This study adopts the systematic mapping of the literature method as a structured ap-
proach to identify, categorize, and analyze existing research related to a defined topic. This
methodology enables a comprehensive overview of the research landscape, helping to assess
the presence and volume of scientific evidence in a particular domain (Soares; Nobre; Freitas,
2019). The process involves the formulation of a research protocol, which includes the defini-
tion of research questions, the construction of search strategies, and the application of inclusion

and exclusion criteria for article selection.

3.1 Research Questions

The central research question guiding this study is: What is the current landscape of sci-
entific publications concerning the development of indoor Autonomous Mobile Robots (AMRs)
for environment mapping?

To support this objective, five specific research questions (RQs) were defined:

RQ1 What are the challenges encountered in the development of AMRs?

RQ2 What are the algorithms and strategies used for the autonomous navigation and localiza-
tion of AMRs?

RQ3 What are the algorithms and strategies used in AMRs for reliable environment mapping?

RQ4 What are the main microcontrollers, minicomputers, sensors, actuators, movement mech-

anisms, and peripherals used in the development of AMRs for environment mapping?

RQS5 What strategies have been adopted to improve energy efficiency in AMRs?

These questions were defined to capture the key technological aspects involved in the
development of indoor AMRs, including the core challenges, algorithmic and architectural
solutions, and resource-efficiency strategies. The scope is intentionally broad to reflect the
multidisciplinary nature of AMR systems, encompassing perception, control, computation, and
power management.

The answers to these questions also allow for a secondary analysis of publication trends,
institutional contributions, and geographic distribution of research on this topic, offering insight

into the evolution and maturity of the field over the past decade.

3.2 Selection of Articles

The selection of articles was based on searches conducted in three databases widely
recognized for their relevance in computing and engineering: the Association for Computing
Machinery (ACM), the Institute of Electrical and Electronics Engineers (IEEE), and Science
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Direct. These repositories were chosen because they concentrate high-impact publications in
the areas of robotics, artificial intelligence, and embedded systems, ensuring both coverage and
quality of the sources.

The searches were conducted in October 2022 using a unified search string structured
to identify studies on AMRs applied to environment mapping. The query targeted titles and

abstracts and was written in English to maximize relevance across international publications:

S1 (Autonomous Mobile Robots OR AMR) AND (mapping OR map generation) AND
((challenges OR difficulties) OR (algorithm OR artificial intelligence OR machine learn-
ing OR internet of things OR IOT) OR (microcontroller OR minicomputer OR mini com-
puter OR sensor OR actuator OR peripheral OR designs OR configuration OR settings)
OR (energy saving OR energy-saving OR battery saving OR energy efficiency)))

The search string was designed to align with the multidimensional scope of this study,
which includes technical, algorithmic, and architectural elements of AMR development in in-
door settings.

Additionally, the search was limited to articles published from 2012 to October 2022.
This decision reflects the rapid technological advancement in robotics and related fields, and a
10-year window was considered appropriate to capture the most relevant and updated develop-
ments.

An initial set of 129 articles was retrieved. Duplicate entries were then removed, and

abstracts were reviewed to apply the following exclusion criteria:

* Review papers.

Papers in languages other than English.
* Papers focused on non-terrestrial AMRs.

* Papers focused on large-scale AMRs.

Papers focused on outdoor AMRs.

Papers focused on articulated AMRs.

Duplicated papers (only the most updated version was retained).

Publications not accessible in full text.

After applying all criteria, 79 articles remained. Table 1 summarizes the number of ar-
ticles retrieved before applying the exclusion criteria (Initial Count column) and after applying

the criteria (Final Selection column).

Abakdés, Belo Horizonte, v.13, n.2, €2025130202, Ago./Nov. 2025 - ISSN: 2316-9451 6



Indoor Autonomous Mobile Robot for Environment Mapping: a Systematic Mapping of the Literature

Table 1 — Number of articles retrieved and selected by database

Database Initial Count | Final Selection
ACM 17 14
IEEE 79 57
Science Direct 33 8
Total 129 79

Source: Authors.

This final selection represents a refined dataset of studies strictly aligned with the de-
fined scope and research questions, ensuring the relevance and depth required for a meaningful

systematic mapping.

4 RESULTS AND DISCUSSION

Figure 1 presents the temporal distribution of the selected articles, illustrating the num-
ber of publications per year. The data indicate a steady increase in research activity on Au-
tonomous Mobile Robots (AMRs), with a significant rise observed after 2019. This trend
reflects both the rapid technological evolution in artificial intelligence and robotics, and the
growing demand for autonomous systems across sectors such as logistics, healthcare, and man-
ufacturing (Junior et al., 2021).

In addition, the COVID-19 pandemic emphasized the value of automation in reducing
human exposure and maintaining operational continuity, which likely contributed to the recent
surge in related studies.

Figure 1 — Temporal distribution of articles

Source: Authors.
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It is also important to note that the apparent decline in the number of articles in 2022
may be attributed to the data collection period, which was conducted in October 2022. Due to
the typical delay between conducting research and publishing results, it is likely that additional
publications from late 2022 were not yet indexed at the time of this study. Therefore, the final
count of articles for that year may be higher than reflected here.

As for the geographical distribution of research, China was the most represented coun-
try, accounting for 18 articles, or 22.78% of the total. It was followed by the United States (10
articles), Japan (6), South Korea (6), Indonesia (4), and India (4). Several other countries con-
tributed with three or fewer articles. Frame 1 lists the countries and the corresponding number

of papers, along with the respective references.
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Frame 1 — Number and researches by countries where the universities that conducted
them are located

Country Total | Papers

China 18 | (Gao; Li, 2020) (Chai et al., 2018) (Wang et al., 2016) (Zhang;
Jiang; Wang, 2016) (Yan et al., 2018) (Chen et al., 2021) (Zheng;
He; Pan, 2022) (Shi et al., 2019) (Pan et al., 2019) (Yuan et al.,
2022) (Yang et al., 2020) (Zeng; Si, 2019) (Yasuda; Ohkura; Ya-
mada, 2013) (Zhi; Xuesong, 2018) (Liu ef al., 2021) (Zhang et
al., 2020) (Yuan et al., 2021) (Zhang et al., 2021)
United States 10 (Li et al., 2019) (Matta; Chalhoub, 2013) (Walcott-bryant et al.,
2012) (Smith et al., 2013) (Argush et al., 2020) (Bae; Lee, 2018)
(Janah; Fujimoto, 2018a) (Deshpande et al., 2014) (Nashed et al.,
2021) (Martin et al., 2020)
Japan 6 (Deguchi et al., 2014) (Noaman; Al-shibaany; Al-wais, 2020)
(Fukui et al., 2022) (Du; Ai; Feng, 2020) (Janah; Fujimoto,
2018b) (Ohnishi; Imiya, 2013)

South Korea 6 (Jo et al., 2014) (Lee; Chung, 2021) (Laskar; Tawhid; Chung,
2012) (Dinh; Kim, 2020) (Lee; Chang, 2016) (Talwar; Jung,
2019)
Indonesia 4 (Attamimi et al., 2022) (Arthaya; Pratama; Wu, 2014) (Anggraeni
et al., 2021) (Budiman; Laurensia; Arthaya, 2021)
India 4 (Li et al., 2019) (Jain; Kumar; Nagla, 2015) (Maria et al., 2021)
(Singha; Ray; Samaddar, 2017)
Italy 3 (Li, 2015) (Luperto et al., 2019) (Riva; Amigoni, 2017)
Portugal 3 (Faria; Moreira, 2021) (Junior et al., 2021) (Dogru; Marques,
2015)
Germany 3 (Schwendner, 2012) (Jacobson; Chen; Milford, 2015) (MUller ez
al., 2022)
Brazil 3 (Oliveira; Carvalho; BrandAo, 2018) (Mota et al., 2018) (Fernan-

des; Oliveira; Neto, 2022)

Spain 2 (Jaenal; Moreno; Gonzalez-jimenez, 2019) (Prieto et al., 2017)
Canada 2 (Wang; Jenkin; Dymond, 2014) (Clement et al., 2020)
Hungry 2 (Hajdu ez al., 2020) (Kis; Csempesz; Csdji, 2021)
Turkey 2 (KOseoglu; Celik; Pektas, 2017) (Uslu et al., 2015)

United Kingdom 2 (Tomy et al., 2020) (Rigatos, 2012)

Peru 1 (Inofuente-colque et al., 2021)
France 1 (Gokhool et al., 2014)

Bulgaria 1 (Hamadi er al., 2020)

Finland 1 (Qingqing et al., 2019)

Mexico 1 (Roa-borbolla et al., 2017)
Australia 1 (Cadena; KoSeckA, 2014)
Malaysia 1 (Baharom et al., 2020)

Croatia 1 (Mutlu; Uyar, 2012)

Russia 1 (Baltashov; Semakova, 2018)

Source: Authors.
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Regarding the publication venues of the selected articles, Frame 2 presents the main
journals and conferences in which the studies were published. Other venues not listed in the

table had only one publication each related to the scope of this research.

Frame 2 - Venues with higher number papers

Venue Total | Papers

International Conference on 5 (Walcott-bryant et al., 2012) (Jacobson; Chen; Mil-

Intelligent Robots and Sys- ford, 2015) (Deshpande et al., 2014) (Nashed et al.,
tems 2021) (Martin et al., 2020)
IEEE ACCESS 4 (Shi et al., 2019) (Mota et al., 2018) (Yuan et al.,

2022) (Yang et al., 2020)
IFAC Symposium on Robot 2 (Mutlu; Uyar, 2012) (Baltashov; Semakova, 2018)

Control

European Conference on Mo- 2 (Dogru; Marques, 2015) (Tomy et al., 2020)

bile Robots
International Conference on 2 (Anggraeni et al., 2021) (Budiman; Laurensia;
Mechatronics, Robotics and Arthaya, 2021)

Systems Engineering
Annual Conference of the 2 (Faria; Moreira, 2021) (Janah; Fujimoto, 2018a)
IEEE Industrial Electronics

Society
IEEE International Confer- 2 (Wang et al., 2016) (Du; Ai; Feng, 2020)

ence on Real-time Computing

and Robotics
IEEE International Confer- 2 (Zhang; Jiang; Wang, 2016) (Liu ef al., 2021)

ence on Mechatronics and

Automation
IEEE International Confer- 2 (Lee; Chung, 2021) (Cadena; KoSeckA, 2014)

ence on Robotics and Au-

tomation

Source: Authors.

4.1 RQI1 - What are the challenges encountered in the development of AMR?

Several studies on Autonomous Mobile Robots (AMRs) highlight various challenges
faced during their development. Frame 3 categorizes the primary challenges into five main
types - navigation, SLAM, localization, sensors, and map generation - listing the articles that

identify each type as either the main challenge or a secondary one.
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Frame 3 — Challenges Encountered in the Development of AMR

Type of chal- | Papers (main challenge) Papers (challenge, but not as the

lenge main one)

Navigation (Li et al., 2019) (Oliveira; Carvalho; | (Li et al., 2019) (Chai et al., 2018)

BrandAo, 2018) (Li, 2015) (Qingging | (Ohnishi; Imiya, 2013)
et al., 2019) (Chai et al., 2018) (Lu-
perto et al., 2019) (Riva; Amigoni, 2017)
(Hamadi et al., 2020) (Hajdu et al., 2020)
(Laskar; Tawhid; Chung, 2012) (Pan et
al., 2019) (Schwendner, 2012) (Budiman;
Laurensia; Arthaya, 2021) (Singha; Ray;
Samaddar, 2017) (Kis; Csempesz; Csdji,
2021) (Ohnishi; Imiya, 2013)

SLAM (Attamimi et al., 2022) (Gao; Li, 2020) | (Schwendner, 2012) (Yan et al.,

(Wang; Jenkin; Dymond, 2014) (Jo et | 2018) (Liu et al., 2021) (Zhang et
al., 2014) (Zhang; Jiang; Wang, 2016) | al., 2020) (Kis; Csempesz; Cséji,
(Zheng; He; Pan, 2022) (Fukui et al., | 2021)
2022) (Zhi; Xuesong, 2018) (Zhang et al.,
2020) (Zhang et al., 2021) (Liu et al.,
2021) (Jacobson; Chen; Milford, 2015)
(Talwar; Jung, 2019) (Janah; Fujimoto,
2018a) (Du; Ai; Feng, 2020) (Janah; Fu-
jimoto, 2018b)

Localization (Noaman; Al-shibaany; Al-wais, 2020) | (Mota et al., 2018)
(Maria et al., 2021) (Clement et al., 2020)

(Mota et al., 2018) (Baharom et al., 2020)
(Ohnishi; Imiya, 2013)

Sensor (Deguchi et al., 2014) (Jaenal; Moreno; | (Yuan et al., 2021) (Ohnishi; Imiya,
Gonzalez-jimenez, 2019) (Yuan et al., | 2013) (Ohnishi; Imiya, 2013)
2022) (Yang et al, 2020) (Cadena;

KoSeckA, 2014)
Map Genera- | (Yan et al, 2018) (Zeng; Si, 2019) (KOseoglu; Celik; Pektas, 2017)
tion (Nashed et al., 2021) (Martin et al., 2020) | (Zhi; Xuesong, 2018) (Mota et
al., 2018) (Zhang et al., 2020)
(Ohnishi; Imiya, 2013)

Source: Authors.

Navigation emerged as the most cited challenge across the selected studies. Articles
in this category discussed difficulties such as: the development and assessment of optimized
navigation strategies in unknown environments (Li et al., 2019; Li, 2015; Qingqing et al., 2019;
Luperto et al., 2019; Chai et al., 2018); complete and efficient area coverage (Riva; Amigoni,
2017); path optimization (Laskar; Tawhid; Chung, 2012); information abstraction for target
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location (Singha; Ray; Samaddar, 2017); and adaptation to dynamic environments (Ohnishi;
Imiya, 2013).

SLAM (Simultaneous Localization and Mapping) was the second most prevalent chal-
lenge. Issues reported include: localization accuracy (Attamimi et al., 2022; Schwendner,
2012; Talwar; Jung, 2019; Janah; Fujimoto, 2018a; Du; Ai; Feng, 2020); odometry precision
(Zhi; Xuesong, 2018; Lee; Chang, 2016; Zhang et al., 2020); and the robustness of relocaliza-
tion processes to support autonomous navigation (Zhang et al., 2020).

Regarding localization, the main problems identified were accuracy (Noaman; Al-
shibaany; Al-wais, 2020), high cost (Baharom et al., 2020), and long-term consistency in metric
self-localization (Clement ef al., 2020).

Sensor-related challenges include: human-focused environmental monitoring (Deguchi
et al., 2014), dynamic object recognition (Yang et al., 2020), environmental sensing (Yuan et
al., 2022), and managing data overlap from multiple sensors (Cadena; KoSeckA, 2014; Yuan
et al.,2021).

In map generation, challenges involve: estimating robot position while building the
environment map (Mota et al., 2018; Yan et al., 2018; Zeng; Si, 2019); achieving high-precision
and consistent maps (Zhang et al., 2020); and enabling real-time spatial reasoning from sensory
data (Ohnishi; Imiya, 2013).

Other isolated but noteworthy challenges include: converting spatial points into images
(Bae; Lee, 2018); human behavior prediction (Zheng; He; Pan, 2022); operation in multi-robot
systems (Yasuda; Ohkura; Yamada, 2013); system architecture efficiency (Fernandes; Oliveira;
Neto, 2022); AMR-to-computer communication (Anggraeni et al., 2021); ethical decision-
making (Smith et al., 2013); and high-precision time synchronization (Yuan et al., 2021).

Understanding these challenges provides a foundation for future research in the devel-
opment of indoor AMRs. By identifying these obstacles early, researchers can design more

resilient systems that proactively address known limitations.

4.2 RQ2 - What are the algorithms and strategies used for autonomous navigation and
localization of AMR?

Autonomous navigation and localization emerged as the most frequently cited chal-
lenges in the reviewed articles, with navigation, SLAM, and localization jointly accounting for
over 82% of the references to primary challenges in AMR development.

Consequently, the reviewed studies proposed various strategies to address these prob-
lems. One of the most widely adopted families of algorithms is SLAM (Simultaneous Local-
ization and Mapping) (Qingqing et al., 2019; Gao; Li, 2020; Hamadi et al., 2020; Hajdu et al.,
2020; Pan et al., 2019; Janior et al., 2021; Fukui et al., 2022; Schwendner, 2012; Roa-borbolla
et al., 2017; Martin et al., 2020; MUller et al., 2022). Prominent variants include 3D Fast-
SLAM (Jo et al., 2014), Fast-SLAM (Wang et al., 2016), Hector SLAM (Maria et al., 2021),
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Visual SLAM (Shi et al., 2019), ORB-SLAM-2 (Anggraeni et al., 2021; Yang et al., 2020),
MGC-VSLAM (Yang et al., 2020), and RD-SLAM (Nashed et al., 2021). SLAM is essential
for enabling AMRs to construct and update a map while simultaneously determining their own
position, a capability vital for autonomous navigation, obstacle avoidance, and task execution
(Attamimi et al., 2022; Jo et al., 2014).

The Robot Operating System (ROS) was another frequently referenced tool (Hajdu et
al., 2020; Maria et al., 2021; Argush et al., 2020; Faria; Moreira, 2021; Anggraeni et al.,
2021; Zhi; Xuesong, 2018; Talwar; Jung, 2019; Baltashov; Semakova, 2018). ROS offers
a modular and flexible framework that streamlines the integration of diverse hardware and
software components. Its vast library and global community accelerate development and foster
the adoption of advanced algorithms in real-world robotic systems (Zhi; Xuesong, 2018).

Filtering techniques are commonly used to fuse sensor data, correct measurement er-
rors, and manage uncertainty in navigation (Li et al., 2019). Notable approaches include: the
Extended Kalman Filter (EKF) (Attamimi et al., 2022; Gao; Li, 2020; Laskar; Tawhid; Chung,
2012), Sensor Fusion (Li et al., 2019), the Madgwick Filter (Attamimi et al., 2022), Rao-
Blackwellized Particle Filtering (Jo et al., 2014), Multi-Sensor Fusion System (MSFS) (Dinh;
Kim, 2020), and GC Filter (Yang et al., 2020).

Odometry was also highlighted as a crucial method, particularly in indoor settings
where GPS may be unavailable or unreliable. To improve positional accuracy, techniques such
as Visual-Inertial Odometry (VIO) (Qingqing et al., 2019; Zhang et al., 2020; Zhang et al.,
2021), Visual Odometry (Gokhool et al., 2014), and the use of Odometry Sensors (Baharom et
al., 2020) were adopted.

Machine learning (ML) algorithms are increasingly used to enhance AMR decision-
making in dynamic environments. Cited methods include Artificial Neural Networks (ANN)
or Deep Neural Networks (DNN) (Gao; Li, 2020; Clement et al., 2020; Hajdu et al., 2020; Yuan
et al., 2022), Deep Reinforcement Learning (DRL) (Zheng; He; Pan, 2022; Yasuda; Ohkura;
Yamada, 2013), probabilistic localization using Adaptive Monte Carlo Localization (AMCL)
(Maria et al., 2021; Junior et al., 2021), Bayes Rule Learning (Yasuda; Ohkura; Yamada,
2013; Bae; Lee, 2018), hierarchical exploration planners with reinforcement learning (Zheng;
He; Pan, 2022), K-means clustering (Laskar; Tawhid; Chung, 2012), Behavior-Based Learning
(MUller ef al., 2022), and the Deep Q-Network (DQN) framework (Li et al., 2019).

Additional strategies reported include the use of artificial color beacons for localiza-
tion (Noaman; Al-shibaany; Al-wais, 2020), search algorithms (Oliveira; Carvalho; BrandAo,
2018), decentralized multi-robot collision avoidance via Proximal Policy Optimization (Zheng;
He; Pan, 2022), RFID and Petri Net integration (Mota et al., 2018), graph-based models
(Budiman; Laurensia; Arthaya, 2021), Monte Carlo methods integrated with laser sensors via
ROS (Talwar; Jung, 2019), Swarm Intelligence techniques like Particle and Firefly algorithms
(Janah; Fujimoto, 2018a), and the application of Markov Random Fields and Conditional Ran-
dom Fields (Cadena; KoSeckA, 2014).
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4.3 RQ3 - What are the algorithms and strategies used in AMRs for reliable environ-
ment mapping?

In the development of AMRs, reliable mapping emerges as a critical challenge. Key
issues include constructing consistent maps and determining the robot’s position within them
(Mota et al., 2018; Yan et al., 2018; Zeng; Si, 2019), distinguishing between static and dy-
namic elements in the environment (Ohnishi; Imiya, 2013), and achieving high resolution and
precision in the generated maps (Zhang et al., 2020).

Reliable environment mapping is essential to enable safe and efficient autonomous nav-
igation. It provides a structured spatial representation that allows AMRs to interpret surround-
ings, identify landmarks and obstacles, and determine safe, optimized paths. This facilitates
real-time decision-making, minimizes collisions, and enhances task execution.

Frame 4 presents the main algorithms cited for reliable map generation. G-mapping is
among the most widely adopted, known for its ability to simultaneously construct maps and
localize the robot using sensor data. Other relevant algorithms include Real-Time Appearance-
Based Mapping (RTAB-Map), which utilizes RGB-D sensor data; Greedy Randomized Adap-
tive Search Procedure (GRASP), for procedural mapping; voxel-based methods for 3D repre-

sentation; and Cartographer, for robust 2D and 3D mapping and localization.

Frame 4 — Main algorithms used for generating reliable maps

Algorithm Description Papers

G-mapping Accurate map construc- | (Hajdu et al., 2020) (Uslu et al., 2015) (Ba-
tion harom et al., 2020) (Wang et al., 2016)
RTAB-Map Processing RGB-D | (Attamimi et al., 2022) (Argush et al., 2020)
data and generating

real-time maps

GRASP Procedural map genera- | (Riva; Amigoni, 2017)
tion
Voxel map Three-dimensional rep- | (Jo et al., 2014)

resentation of the envi-

ronment

Cartographer | Map construction and | (Du; Ai; Feng, 2020)
AMR position determi-

nation

Source: Authors.

Beyond algorithmic solutions, some articles proposed techniques addressing dynamic
and complex indoor environments. For instance, (Inofuente-colque et al., 2021) presented a

2D mapping approach for dynamic environments with frequently moving objects. Meanwhile,
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(Jain; Kumar; Nagla, 2015) introduced a corner-detection-enhanced method that improved

mapping accuracy and reduced navigational complexity.

4.4 RQ4-What are the main microcontrollers, minicomputers, sensors, actuators, move-
ment mechanisms, and peripherals used in the development of AMRs for environ-

ment mapping?

The choice of controller is fundamental in AMR development, as it directly influences
system performance and efficiency in relation to its intended application. Frame 5 summarizes

the primary controllers used and the corresponding references.

Frame 5 — Main controllers used for the development of AMR

Controller Papers

Arduino Microcontroller (Attamimi et al., 2022; Deguchi et al., 2014; Mota et al., 2018)

Jetson Minicomputer (Attamimi et al., 2022; Argush et al., 2020; Faria; Moreira,
2021)

Computer (Deguchi et al., 2014; Yang et al., 2020; Zeng; Si, 2019; Bal-
tashov; Semakova, 2018)

Source: Authors.

Microcontrollers, such as Arduino Uno, Nano, and Mega, were primarily used in sim-
pler systems (Attamimi et al., 2022; Deguchi et al., 2014; Mota et al., 2018). For more complex
tasks requiring greater processing power, minicomputers like Jetson were frequently adopted
(Attamimi et al., 2022; Argush et al., 2020; Faria; Moreira, 2021). Traditional computers
were preferred in implementations demanding advanced computational resources and algo-
rithm complexity (Deguchi et al., 2014; Yang et al., 2020; Zeng; Si, 2019; Baltashov; Se-
makova, 2018). In some works, the use of GPUs was also reported to accelerate processing
(Hajdu et al., 2020; Pan et al., 2019).

Frame 6 presents the main sensors utilized in AMRs, which play a critical role in per-

ception and interaction with the environment.
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Frame 6 — Main sensors used for the development of AMR

Sensor Papers

Camera (Attamimi et al., 2022; Deguchi et al., 2014; Jo et al., 2014; Faria;
Moreira, 2021; Bae; Lee, 2018; Wang; Jenkin; Dymond, 2014;
Noaman; Al-shibaany; Al-wais, 2020; Hamadi et al., 2020; Hajdu
et al., 2020; Argush et al., 2020; Shi et al., 2019; Uslu et al.,
2015; Anggraeni et al., 2021; Yuan et al., 2022; Yasuda; Ohkura;
Yamada, 2013; Dinh; Kim, 2020; Talwar; Jung, 2019; Yang et al.,
2020; Yuan et al., 2021; Baltashov; Semakova, 2018)

LiDAR (Hajdu et al., 2020; Maria et al., 2021; Argush et al., 2020; Pan et
al., 2019; Faria; Moreira, 2021; Dinh; Kim, 2020; Roa-borbolla et
al., 2017; Baharom et al., 2020; Yuan et al., 2021; Kis; Csempesz;
Csdji, 2021; Baltashov; Semakova, 2018; Luperto et al., 2019;
Gao; Li, 2020; Chai et al., 2018; Prieto et al., 2017; Talwar; Jung,

2019)

Distance sensors (Hamadi et al., 2020; Maria et al., 2021; Budiman; Laurensia;
Arthaya, 2021; Yuan et al., 2022; Yasuda; Ohkura; Yamada,
2013)

Gyroscope (Attamimi et al., 2022; Gao; Li, 2020)

GPS (Hamadi et al., 2020; Smith et al., 2013)

Sonar sensors (Wang; Jenkin; Dymond, 2014)

LSM303D Compass (Noaman; Al-shibaany; Al-wais, 2020)

RFID (Mota et al., 2018)

Speed sensor (Yuan et al., 2022)

Wheel encoders (Baharom et al., 2020)

Source: Authors.

Among the sensors, cameras - especially Microsoft Kinect - were heavily utilized for
visual SLAM and object recognition (Deguchi et al., 2014; Jo et al., 2014; Faria; Moreira,
2021; Bae; Lee, 2018; Baltashov; Semakova, 2018). LiDAR sensors were also commonly
applied for precise spatial mapping; examples include Ouster OS-11 (3D), RP LiDAR A2 (2D),
and Hesai Pandar4OM (Hajdu et al., 2020; Maria et al., 2021; Argush et al., 2020; Yuan et
al., 2021; Kis; Csempesz; Csdji, 2021). Ultrasonic distance sensors were frequently used for
simpler proximity detection tasks (Maria et al., 2021; Budiman; Laurensia; Arthaya, 2021;
Yuan et al., 2022).

Despite its usefulness in outdoor navigation, GPS is often ineffective indoors due to

signal attenuation through physical barriers, resulting in limited precision.
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Frame 7 lists the main chassis models employed, which are essential for defining mo-

bility, mechanical support, and task-specific design constraints.

Frame 7 — Main chassis used for AMR development

Chassis Papers
TurtleBot2 (Deguchi et al., 2014; Zheng; He; Pan, 2022)
Robocom (Luperto et al., 2019)

Modified Nomad SuperScout | (Wang; Jenkin; Dymond, 2014)
AION ROBOTICS R1 UGV | (Argush et al., 2020)
Festo Robotino 3 mobile | (Anggraeni et al., 2021)

robot
Acrylic chassis (Mota et al., 2018)
Pioneer-3DX Robot (Bae; Lee, 2018)

Source: Authors.

4.5 RQS5 - What strategies have been adopted to improve energy efficiency in AMRs?

Energy efficiency is a critical factor in the development of Autonomous Mobile Robots
(AMRs), directly impacting their autonomy and operational viability. However, energy-saving
strategies were addressed in only a small portion of the reviewed literature, with just 6.3% of
the selected articles discussing this topic explicitly (Gao; Li, 2020; Wang; Jenkin; Dymond,
2014; Faria; Moreira, 2021; Du; Ai; Feng, 2020; Tomy et al., 2020).

One of the most frequently cited strategies involves path planning algorithms, which
help AMRs avoid unnecessary travel by optimizing routes. This minimizes energy consump-
tion, particularly since locomotion is one of the most power-intensive operations in mobile
robots (Gao; Li, 2020). Additionally, (Wang; Jenkin; Dymond, 2014) note that reduced move-
ment in corridors with limited visibility further contributes to energy conservation.

Efficient navigation strategies also contribute to energy savings by reducing redundant
movements and avoiding collisions (Gao; Li, 2020). These strategies often rely on sensors for
obstacle detection, enabling robots to make real-time decisions that reduce wasteful actions.

Another effective strategy is optimizing sensor usage. As discussed by (Faria; Moreira,
2021), sensors can be energy-intensive, especially when used continuously. Adaptive sampling
algorithms and selective deactivation of sensors when they are not needed help reduce power
consumption.

Control algorithms are equally important, as they enable AMRs to adjust speed and
direction based on environmental factors. For instance, reducing speed in narrow corridors or
low-visibility areas can lead to significant energy savings (Du; Ai; Feng, 2020).

Hardware selection also plays a pivotal role. The use of low-power microcontrollers and

minicomputers, such as the STM32, can significantly enhance energy efficiency by reducing
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baseline consumption during operation (Du; Ai; Feng, 2020).
Finally, (Tomy et al., 2020) propose a strategy based on battery management using
Markov decision processes. This approach models battery dynamics to ensure that energy

reserves are used optimally, ensuring that the AMR has sufficient charge for essential tasks.

5 CONCLUSION

This study presented a systematic mapping of the literature on the development of
indoor Autonomous Mobile Robots (AMRSs) for environment mapping, based on articles re-
trieved from the ACM, IEEE, and Science Direct databases.

The analysis revealed that the most frequently cited challenges in AMR development
are related to navigation, SLAM, and localization. These challenges primarily involve the
creation of effective and optimized navigation strategies in unknown environments, achieving
high precision in simultaneous localization and mapping, and ensuring odometry accuracy.
Additional difficulties were also noted, such as the proper selection and utilization of sensors
and the construction of reliable environmental maps.

Regarding algorithms and strategies for autonomous navigation and localization, SLAM
methods were the most prevalent. These allow AMRs to construct and continuously update
environmental maps while tracking their own position. The Robot Operating System (ROS)
was widely adopted for software integration and modularity, while sensor fusion techniques
and filters were used to improve data accuracy and robustness. Machine Learning approaches
were also leveraged to improve decision-making in dynamic environments. Other methods
such as odometry, beacon usage, search algorithms, and RFID were also observed.

Reliable environment mapping, identified as a major development challenge, plays a
key role in autonomous navigation. Among the mapping strategies, G-mapping stood out due
to its real-time, sensor-driven capabilities for accurate map construction.

In terms of hardware, Arduino and Jetson were the most frequently used microcon-
trollers and minicomputers, respectively. The majority of the reviewed articles utilized cam-
eras and LiDAR sensors, while others incorporated distance sensors, gyroscopes, sonar sensors,
compasses, RFID, speed sensors, wheel encoders, and GPS. Different chassis types were also
identified, reflecting varying mobility and application requirements.

Despite the critical importance of energy efficiency in AMR development, only 6.3% of
the analyzed articles discussed energy-saving strategies. Among those that did, the main tech-
niques included optimized path planning, adaptive sensor usage, control algorithms for speed
regulation, hardware efficiency improvements, and battery management based on Markov de-
cision processes.

The study also provided insights into publication trends, geographical distribution of
research, and dissemination venues. A significant increase in publications was observed post-

2019, with China leading in research output, followed by the United States, Japan, and South
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Korea. Key journals and conferences were also identified.

Overall, the main contribution of this work is the organization and analysis of relevant
scientific literature, offering a consolidated view of the current state and challenges in devel-
oping indoor AMRs for mapping tasks. The findings serve as a useful foundation for future
research, supporting both academic investigations and practical developments.

As future work, we propose conducting comparative analyses of the key technologies
identified in this study, with the goal of developing a detailed guide to optimal AMR architec-
tures. Such a guide would match specific contexts and objectives with suitable components,
algorithms, and strategies. Additionally, further exploration of energy-saving techniques in

AMR design is warranted, given the limited coverage of this topic in existing literature.
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