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Abstract

Currently, several accurate mathematical models predict the relationship between proper-

ties of mixtures, such as equations of state and mixing rules. Used in phase equilibrium

problems and oil reservoir simulations, these models play a fundamental role. A reduction

theorem has recently been formulated, establishing conditions for reducing the dimension-

ality of the phase equilibrium equations of multicomponent mixtures, applying concepts

of Linear Algebra (such as Spectral Theorem and Frobenius Norm) commonly seen in en-

gineering courses. This study presents the main ideas, deducing a reduction formulation

based on a cubic equation of state and classical mixing rules, highlighting the simplicity

of the formulation and minimizing the approximation error. Numerical techniques, math-

ematical results, and algorithms are described to facilitate development. Additionally, a

customized framework is presented to detail methodologies and algorithms. Numerical

experiments illustrate the efficiency of the reduction technique in calculating pressures

and isothermal dew point compositions, significantly reducing processing time. These ad-

vances have the potential to benefit industries and complex processes that rely on precise

control of mixture properties, such as process optimization and oil reservoir simulation.

In summary, dimensionality reduction stands out as an important contribution to mixture

thermodynamics, providing efficiency and accuracy in complex engineering problems.
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Resumo

Atualmente, diversos modelos matemáticos precisos preveem a relação entre propriedades

de misturas, como equações de estado e regras de mistura. Utilizados em problemas de

equilíbrio de fases e simulações de reservatórios de petróleo, esses modelos desempenham

papel fundamental. Um teorema de redução foi formulado recentemente, estabelecendo

condições para a redução da dimensionalidade das equações de equilíbrio de fases de mis-

turas multicomponentes, aplicando conceitos de Álgebra Linear (como Teorema Espectral

e Norma de Frobenius) comumente vistos em cursos de engenharia . Esse estudo apresenta

as ideias principais, deduzindo uma formulação de redução com base em uma equação de

estado cúbica e regras clássicas de mistura, destacando a simplicidade da formulação e

minimizando o erro de aproximação. Técnicas numéricas, resultados matemáticos e al-

goritmos são descritos para facilitar o desenvolvimento. Além disso, é apresentado um

framework customizado para detalhar metodologias e algoritmos. Experimentos numé-

ricos ilustram a eficiência da técnica de redução no cálculo de pressões e composições

isotérmicas de ponto de orvalho, reduzindo significativamente o tempo de processamento.

Esses avanços têm potencial para beneficiar indústrias e processos complexos que depen-

dem do controle preciso de propriedades de misturas, como otimização de processos de

separação e simulação de reservatórios de petróleo. Em resumo, a redução de dimen-

sionalidade destaca-se como uma contribuição importante à termodinâmica de misturas,

proporcionando eficiência e precisão em problemas complexos de engenharia.

Palavras-chave: Ponto de orvalho. Termodinâmica. Análise espectral. Norma de

Frobenius.
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1 INTRODUCTION

This paper deals with the reduction of the system of equations that governs the phase
equilibrium of non-reactive systems (absence of chemical reaction). Reductions in computation
times can be extremely significant in multiphase flow problems (Matheis; Hickel, 2016) or
in the simulation, design and optimization of separators, as, for instance, in flash operations
(Watson et al., 2017) and distillation columns. Particularly, some well-established chemical
process simulation tools employ equations of state models in these unit operations (Mathias;
Boston; Watanasiri, 1984).

Several reduction procedures applied to equilibrium problems have been proposed by
Michelsen (1986), Nichita e Minescu (2004), Nichita (2006) and Nichita (2008). In terms of
the phase equilibrium calculation, this consists of replacing the traditional variables (number
of mols, molar fractions, partition coefficients) by a few functions of them. Therefore, the
solution is no longer in the compositional space, but in the reduced space for the new variables
introduced. Schematically, a reduction procedure can be summarized as detailed in Figure
1, using a system with two nonlinear equations. The original system exhibits two nonlinear
equations, f1(y1, y2) and f2(y1, y2), to be zeroed. This system can be approximated by the
nonlinear system g1(q1, q2) and g2(q1, q2). Considering that q1 ≈ q∗1 , the nonlinear system can
be reduced to a single nonlinear equation g2(q∗1, q2) = 0.

Figure 1 – A schematic representation of a reduction procedure in a nonlinear system
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Source: The authors.

Hendriks (1988), using a formulation based on Gibbs free energy, proposes a reduc-
tion theorem to obtain approximations of the equilibrium equations. Here, following Nichita
(2006), Nichita (2008), we present a simpler and more practical model using cubic state equa-
tions to formulate the thermodynamic equilibrium, together with Hendriks (1988) proposal of
considering linear combinations of the composition as reduction parameters. We however dis-
entangle the computation by highlighting the simple mathematical structure of the formulation,
emphasizing the low rank approximation underlying the dimensionality reduction procedure.
This is developed below and the mathematical structures is painstakingly explained. The re-
duced equilibrium equations system is formulated as a search for the zeros of a vector function
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in a space of smaller dimension. Furthermore, we present the numerical techniques and math-
ematical results on which the methods are based upon, and algorithms and implementation
details are explained. Finally, we compare the results with the classical approach showing that
this dimensionality reduction method is an accurate and faster algorithm.

From an educational point of view, Linear Algebra courses are usually placed in the
freshman year of a 4 or 5-year undergraduate Chemical Engineering programs. On the other
hand, phase equilibrium problems are subject of a second course in Engineering Thermody-
namics, usually in the junior year. We consider that the methodology detailed here can be
an useful tool for undergraduate students in Chemical Engineering, providing a clear rela-
tion between some important and non-trivial Linear Algebra concepts and its applications in
Thermodynamics. As detailed by Ramkrishna e Amundson (2004), matrix theory is extremely
important in Chemical Engineering field, for instance, in the simulation of distillation columns;
on the other hand, the spectral theorem is a less explored subject in introductory Linear Alge-
bra courses. In summary, from an educational perspective, our approach establishes a bridge
between certain topics in Linear Algebra such as the Spectral Theorem, Frobenius Norm and
rank reduction, which can be found in Strang (2000), and others related to Thermodynamics,
such as phase equilibrium in multicomponent systems (Smith et al., 2017).

As pointed out previously, it should be abundantly clear that the application of the
spectral decomposition in the construction of phase envelopes was discussed, for instance, by
Nichita (2008). In this work, our proposal is to present a detailed description of the mathema-
tical and computational aspects involved in the implementation of such equilibrium problems,
enabling the development of computational methods for them in undergraduate Chemical En-
gineering courses. Furthermore, we address the reduction technique providing a link to the
low-rank approximations in the Frobenius norm. Finally, we present the use of a tailor-made
computational framework, developed in Scilab 5.5 language (Enterprises, 2022), devoted to
the demonstration of the computational gains (elapsed times) related to the use of the spectral
decomposition. The application allows the user to choose the mixture to be studied, and the
results are displayed in a graphical form. The program also permits the selection of the toler-
ance for some important variables – which will be discussed in the next sections, as follows:
the quantity of non-null eigenvalues, and the minimum and maximum temperatures for the
calculation of the dew points – using a graphical user interface (GUI). Furthermore, the com-
putational code presents the non-null eigenvalues and the corresponding eigenvectors, as well
as the elapsed time. The program can be easily adapted to other mixtures, depending on the
critical properties, acentric factor and, obviously, the matrix of binary interaction parameters.
This framework can be an useful tool in undergraduate courses in Thermodynamics, illustrating
the main ideas of the spectral reduction in a simple and interactive way.

The organization of this work is as follows. Section 2 presents the vapor-liquid equi-
librium equations and shows how the reduced equilibrium equations can be obtained by con-
sidering an optimal low rank approximation of the binary interaction matrix. The numerical
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methods employed to solve the reduced equations are also discussed in Section 2 while the
algorithms and implementation details constitutes Section 3. Numerical simulations, using the
developed computational framework, are presented in Section 4. Finally some conclusions are
drawn in Section 5.

2 THEORETICAL BACKGROUND

In this Section, we describe the thermodynamic modelling of the phase equilibrium. We
also discuss how to approximate the matrix of binary interaction parameters in the Frobenius
norm. Finally, we present a brief description of the iterative scheme employed to solve the
vapor-liquid equilibrium.

The main motivation of this Section is to provide a self-contained – but concise – struc-
ture of the implementation of the numerical techniques in an undergraduate setting. The de-
scription of some common subjects in phase equilibrium, such as the definition of the energy
parameter, are strictly necessary, since some quantities will be the variables subject to reduction
techniques. Furthermore, we present a scheme of the dependencies of the variables, as defined
by the equations, in order to facilitate the understanding of the structure of the computational
framework.

2.1 Vapor-liquid Equilibrium

Vapor-liquid equilibrium equations for a closed system with N components at tempe-
rature T , pressure P , and volume V , can be formulated as the equality of chemical potentials
in both phases, together with mass conservation, for all components.

The chemical potential µi relates to the fugacity fi of the component i of the mixture
by the equation (see (Smith et al., 2017))

dµi = RTd ln fi , i = 1, . . . , N , (1)

whereR is the universal gas constant. Therefore, by appropriate integration and simplifications,
the vapor-liquid equilibrium equations can be rewritten as the equality of fugacities of the liquid
and vapor phases

fL
i = fV

i , (2)

with, for instance, fL
i the fugacity of the i component in the liquid phase.

The fugacity coefficient of the component i is defined by the quotient

φi =
fi
Pzi

, (3)

where the variable zi represents the molar fraction of the ith component. In a vapor-liquid
mixture, instead of zi, xi is used for the composition in the liquid phase, and yi for the com-
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position in the vapor phase. Then, by Equation (3), the fugacities are written fL
i = φL

i Pxi,
fV
i = φV

i Pyi. Thus the isofugacity equation, Equation (2), is rewritten as

φL
i xi = φV

i yi. (4)

The coefficients of fugacity are obtained with an equation of state and here we use the Peng-
Robinson equation (PR), written in its polynomial form as

Z3 + (B − 1)Z2 + (A− 3B − 2B2)Z + (B3 +B2 − AB) = 0, (5)

with Z = PV
nRT

the compressibility factor, and n the total number of mols (Smith et al., 2017).
This equation is frequently used in chemical and oil industry simulations because of its rela-
tively simple shape and good accuracy. Is this case, the logarithm of the coefficient of fugacity
is given by (Smith et al., 2017)

lnφi =
Bi

B
(Z − 1)− ln(Z −B)

+
A

2.282B

(
Bi

B
− 2

ψi

am

)
ln

(
Z + 2.414B

Z − 0.414B

)
. (6)

Here, the factor ψi is

ψi =
N∑
j=1

aijzj, (7a)

and the compressibility factor, Z, assumes the value of one of the roots of Equation (5), the
smallest in the case of the liquid phase, and the largest in the case of the vapor phase. The
variables A, B, Bi, aij , and the energy parameter am are described below.

The energy parameter am and the covolume bm of the mixture are given by the van der
Waals–1 mixture rules, (Smith et al., 2017)

am =
N∑
i=1

N∑
j=1

aijzizj , bm =
N∑
i=1

bizi , (7b)

where, by the combination rules,

aij =
√
aiaj(1− cij), i, j = 1, . . . , N , (7c)

following

ai =
Ωa(RTci)

2

Pci

αi(T ), bi =
ΩbRTci
Pci

, (7d)

αi(T ) = [1+S(1−T 0.5
r )]2, S = S0+S1ωi+S2ω

2
i and Tr = T

Tci
. The coefficients cij are called

the binary interaction parameters between components i and j of the mixture. The parameters
ai and bi are the energy parameter and the covolume of the pure component i, respectively. The
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parameters for PR equation are given in Table 1.

Table 1 – Some of PR parameters
S0 S1 S2 Ωa Ωb

0.37464 1.54226 −0.26992 0.45724 0.07780

Source: Research data (Smith et al., 2017).

The coefficients in PR equation, Equation (5), depend on A and B, with

A =
amP

(RT )2
, B =

bmP

RT
, (7e)

and the parameters Bi which show up in the equation for the coefficient of fugacity, Equation
(6), are

Bi =
biP

RT
. (7f)

Moreover, in order to compute the fugacity coefficients, say of the liquid phase, to use
in Equation (4), the energy and covolume parameters should be computed with composition of
the liquid phase, and the compressibility factor to be plugged in Equation (6) is the smallest
root of Equation (5). Similarly, for the vapor phase, am and bm should be computed with zi = yi

and the largest root of Equation (5) should be used in Equation (6).
Therefore, knowing the roots of Equation (5) it is possible at first to calculate the co-

efficients of fugacity of liquid and vapor with Equation (6). The thermodynamic equilibrium
occurs if these coefficients produce equal fugacities as verified by resorting to Equation (4).

The computation of the equilibrium equations, Equation (4), is quite convolved. First,
note that the main unknowns to be determined are the composition of the phases and the com-
mon pressure and temperature. Furthermore, the fugacity coefficients, Equation (6), depend
directly on am, A, B, Bi, ψi, and Z. Also, by Equation (5), Z depends on A and B. Finally,
A, B, Bi depend on am, bm, P and T (Equations (7e) - (7f)). Table 2 exhibits the full depen-
dencies, focusing on the fugacity coefficients which ultimately depend on z, P and T , as can
be seen by inspecting Equations (5) to (7).
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2.2 Approximation of the binary interaction matrix in the Frobenius norm

The dimensionality reduction of the equilibrium equations system is based on the prin-
ciple of keeping the most relevant thermodynamic interactions between the components, as
measured by the binary interaction parameters matrix, and parameterizing them using a smaller
number of surrogate components.

Thus, one step in the dimensionality reduction method is to minimize the Frobenius
norm of the binary interaction matrix approximation error, a problem theoretically characte-
rized by the Eckart-Young-Mirsky theorem (Markovsky; Huffel, 2007). In this formulation,
it is desired to obtain a low-rank approximation of the binary interaction parameter matrix C,
according to the quoted theorem, and a discussion of this issue is given next. The matrix C,
with entries 1 − cij , is a square matrix of order N , where N is the number of components in
the multicomponent system.

First, the binary interaction matrix is symmetric. Thus, by the spectral theorem for real
symmetric matrices, there exist real eigenvalues, λi, and corresponding orthonormal (vertical)
eigenvectors, vi, with i = 1, . . . , N , such that

C =
N∑
i=1

λiviv
t
i. (8)

Suppose that the eigenvalues are ordered so that

|λ1| ≥ |λ2| ≥ . . . ≥ |λN | and |λi| ≤ ε for i = r + 1, . . . , N, (9)

where ε is a prescribed tolerance. Then, define the reduced binary iteration matrix, C∗, by

C∗ =
r∑

i=1

λiviv
t
i. (10)

Using the bound on the eigenvalues (Equation (9)), this matrix approximatesC in the Frobenius
norm,

∥C − C∗∥2F = ∥
N∑

i=r+1

λiviv
t
i∥2F =

N∑
i=r+1

λ2i ≤ (N − r)ε2. (11)

In fact, by the cited Eckart-Young-Mirsty theorem, C∗ is the minimizer of the norm
∥C −R∥F , when R varies among the rank r matrices, i.e.,

∥C − C∗∥F = min
R,rank(R)≤r

∥C −R∥F . (12)
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In other words, the best rank r approximation of C is obtained by diagonalizing C and
constructing C∗ as in Equation (10).

2.3 Reduction parameters

To obtain a system of equations for the thermodynamic equilibrium with a smaller
number of unknowns, we follow Hendriks (1988) and introduce a new set of variables, q =

(q1, · · · , qN)t, representing surrogate variables of the composition of the phases, depending
linearly on them, which can be written entry-wise or in vector-matrix notation, respectively, as

qk =
N∑
i=1

mikzi, or q =M tz, (13)

where M is a N ×N matrix. More specifically, we take

M = (m1, · · · ,mN) = (
√
a ◦ v1, · · · ,

√
a ◦ vN), (14)

where mk =
√
a ◦ vk is k-th column of matrix M ,

√
a is the vector of the square roots of the

energy parameters of the components, Equation (7d), the symbol ◦ is the pointwise Hadamard
product between two matrices, and the columns of the matrix V = (v1 . . .vN) are the orthonor-
mal basis of the binary interaction matrix, Equation (8). Componentwise,

qk = (
√
a ◦ vk)

tz =
N∑
i=1

√
aivikzi, k = 1, . . . , N. (15)

When Equation (9) is satisfied, the problem can be approximated using only a few
of the q variables and these entries of vector q are called reduction parameters, representing
composition surrogate variables that enter a reduced thermodynamic equilibrium system.

2.4 Some parameters in reduced form

With the approximation of C by C∗ we can rewrite am and ψi (Equations (7a), (7b)).
The columns of matrix V present in Equation (14) are the eigenvectors of C. It is important to
note that vk does not depend on the composition.

So, from Equations (7b) and (7c), we write

am =
N∑
i=1

N∑
j=1

√
aiaj(1− cij)zizj

= zt(
√
a
√
a
t ◦ C)z ≈ zt(

√
a
√
a
t ◦ C∗)z, (16)

using matrix notation, Hadamard product and approximation Equation (11).
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From Equation (16), Equation (10), a property of Hadamard product and Equation (15),

am ≈ zt(
√
a
√
a
t
) ◦ C∗)z = zt

(
(
√
a
√
a
t
) ◦
(

r∑
k=1

λkvkv
t
k

))
z

=
r∑

k=1

λkz
t(
√
a ◦ vk)(

√
a ◦ vk)

tz =
r∑

k=1

λkq
2
k. (17)

Letting Ψ denote the vector with components ψi, Equation (7a), and using Equation
(7c) and matrix notation, using the approximation guaranteed by Equation (11), proceeding in
a similar way as before using Equation (10), and Equation (15) we get

Ψ =
(
(
√
a
√
a
t
) ◦ C

)
z ≈

(
(
√
a
√
a
t
) ◦ C∗

)
z

=
r∑

k=1

λk(
√
a ◦ vk)(

√
a ◦ vk)

tz =
r∑

k=1

λkmkqk, (18)

recalling that mk =
√
a ◦ vk is the k-th column of matrix M , Equation (14). Thus, in reduced

form, we define

am(q) =
r∑

k=1

λkq
2
k; ψi(q) =

r∑
k=1

λkmikqk; for i = 1, . . . , N. (19)

Note that the parameter bm, Equation (7b), is not reduced since it does not depend on
the matrix of binary interaction parameters.

2.5 The reduced equations for the dew point calculation

From Equations (7e) and (19), we verify thatA depends on q, P and T ,A = A(q, P, T ).
Also, from Equation (7e), B depends on bm, P and T , B = B(bm, P, T ). Since A and B define
the coefficients of the cubic state equation, Equation (5), one concludes that its roots depend on
q, bm, P and T , Z = Z(q, bm, P, T ). Also Bi, Equation (7f), depends on P and T .

Therefore, since the fugacity coefficients depends on am, A, B, Bi, ψi, and z (see Table
2), one concludes that

φi = φi(q, bm, P, T ), (20)

and the reduced coefficient of fugacity is implicitly given by (Equation (6))

lnφi(q, bm, P, T ) =
Bi(P, T )

B(bm, P, T )
(Z(q, bm, P, T )− 1)− ln(Z(q, bm, P, T )−B(bm, P, T ))

+
A(q, P, T )

2.282B(bm, P, T )

(
Bi(P, T )

B(bm, P, T )
− 2

ψi(q)

am(q)

)
ln

(
Z(q, bm, P, T ) + 2.414B(bm, P, T )

Z(q, bm, P, T )− 0.414B(bm, P, T )

)
. (21)

We assume a dew point problem, where the composition of the vapor phase is known
and one wants to determine the liquid phase composition. Since we consider a dimensionality
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reduction in the liquid phase components, the liquid phase fugacities are written as functions of
the reduced parameters, qL, bLm, P and T . From Equation (4) and from the previous explanation
for the reduced case, xi = xi(q

L,y, bLm, P, T ), we get

xi =
φV
i (yi, P, T )yi

φL
i (q

L, bLm, P, T )
, i = 1, . . . , N. (22)

By multiplying these equations by mik, adding them over all components, and using
Equation (15), we get

qLk =
N∑
i=1

mikxi =
N∑
i=1

mikφ
V
i (yi, P, T )yi

φL
i (q

L, bLm, P, T )
, k = 1, . . . , r. (23)

These equations are the reduced equilibrium equations written for the surrogate compo-
sition variables (reduced variables), for a dew point calculation.

Similar equations and procedure would result if one is interested in computing bubble
points; beginning at Equation (4), Equation (22) which would be modified to

yi =
φL
i (xi, P, T )xi

φV
i (q

V , bVm, P, T )
, i = 1, . . . , N, (24)

where qV is the reduced variables for the vapor phase and bVm is the covolume of vapor phase.
For a dew point calculation under a specified temperature T , we have a system of r + 2

equations to r + 2 unknowns, qL, bm and P
qLk =

∑N
i=1mikxi, k = 1, . . . , r∑N

i=1 xi = 1,

bLm =
∑N

i=1 bixi,

(25)

where xi is as in Equation (22) and y and T are known.
More generally, in order to propose an algorithm for the determination of the composi-

tion of dew points define vector valued function G = (G1, · · · , Gr+2)
t, with entries

Gk(q
L,y, bLm, P, T ) = qLk − (

∑N
i=1mikxi), k = 1, · · · , r ,

Gr+1(q
L,y, bLm, P, T ) = (

∑N
i=1 xi)− 1,

Gr+2(q
L,y, bLm, P, T ) = bLm −

∑N
i=1 bcixi.

(26)
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We can rewrite Equation (5) as

Gk(q
L,y, bLm, P, T ) = 0, for k = 1, . . . , r + 2, (27)

or in vector form as
G(qL,y, bLm, P, T ) = 0. (28)

For the calculation of the dew point where y = y∗ and T = T ∗ are known, define the
function F, given by

F(qL, bLm, P ) = G(qL,y∗, bLm, P, T
∗), (29)

replacing in the function G, y and P with their known values.
Finally, the system to be solved for the dew point problem, with r + 2 equations and

r + 2 unknowns, qL, bLm and P , is given in compact form by

F(qL, bLm, P ) = 0. (30)

For a dew point calculation where y = y∗ and P = P ∗ are known, we define F by
F(qL, bLm, T ) = G(qL,y∗, P ∗, T ), and the system of equations to be solved is F(qL, bLm, T ) =

0.
Equation (30) is a system of nonlinear algebraic equations that can be solved, for exam-

ple, by the multivariate Newton-Raphson method as will be seen in the next sub-section.

2.6 The iterative scheme

To solve the reduced system of non-linear algebraic equations, Equation (30), is to find
the roots of F defined by Equation (29). For that we can adapt iterative methods such as
steepest descent, simulated annealing, differential evolution, among others (Nocedal; Wright,
1999). Here we use multivariate Newton-Raphson (MNR) method (Kelley, 1995), described
below.

To obtain the iteration function of the MNR, use a Taylor expression,

F(S) = F(Sl) + J(Sl)(S− Sl) + E = linear approximation + error, (31)

where S = (qL, bm, P ), Sl is the approximation vector in the l-th iteration, J(S) is the Jacobian
matrix of F(S), with entries

[J(S)]ij =

[
∂Fi(S)

∂xj

]
, with i, j = 1, · · · , r + 2, (32)

and E is a vector that represents the error of the linear approximation.
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In order to establish the iterative method, the approximation of the solution of the equa-
tion in the iteration l + 1 given by Sl+1 is defined by the vector that cancels the linear part of
Equation 31, that is, the vector Sl+1 such that

F(Sl) + J(Sl)(Sl+1 − Sl) = 0. (33)

Pre-multiplying Equation (33) by the inverse of the Jacobian matrix, we obtain

Sl+1 = Sl − J−1(Sl)F(Sl). (34)

Since the inversion of matrices is an expensive operation, one can work with Equation
(33) finding the approximation of the iteration l + 1 solving a linear system to calculate
∆Sl = Sl+1 − Sl

J(Sl)∆Sl = −F(Sl). (35)

In this way, the new estimate will be

Sl+1 = Sl +∆Sl. (36)

It is sometimes convenient to enter a step parameter, η, and define instead the new
estimate by

Sl+1 = Sl + ηl∆Sl. (37)

When the parameter is one, ηl = 1, we obtain Equation (36). Thus, given an initial
estimate S0 = ((qL)0, b0m, P

0) for the solution of Equation (30), we can find a new approximate
solution for Equation (30) using Equation (35), for the calculation of ∆Sl, and Equation (36)
(or Equation (37)) for the calculation of Sl+1. Given ε̄, the stopping criteria is ∥∆Sl∥ < ε̄.

2.7 Initial estimates to solve the reduced system of equilibrium equations

Equation (13) is used with extreme values of z to get an initial estimate of (qL)0. In
fact, since z = x, with 0 ≤ xi ≤ 1, and

∑N
i=1 xi = 1, we conclude that the surrogate reduced

parameters qL must be bounded by (qLk )
m ≤ (qLk ) ≤ (qLk )

M where

(qLk )
m = min

i=1,··· ,N
mik and (qLk )

M = max
i=1,··· ,N

mik. (38a)

Then we take the initial estimate as the middle point,

(qLk )
0 =

(qLk )
m + (qLk )

M

2
, (38b)

to define the vector entries of (qL)0.
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Now this depends on the knowledge of M , Equation (14), which in turn depends on√
a and on the eigenvalues of the binary interaction matrix C. Recall that with the parameters

cij , we can obtain the matrix C of inputs 1 − cij . Diagonalizing this matrix and applying the
spectral theorem we get its eigenvectors.

Thus, together with Equation (7d) for
√
a, this allows the construction of Table 3 with

all data needed to obtain an initial estimate (qL)0. The value ε, from Equation (9) is in Table 3
since not all eigenvectors of C are needed to find the initial estimate of (qL)0.

With the eigenvectors of C∗, and the other data of the Table 3, we can obtain an initial
estimate for qL, since the vector q depends on the matrix M as shown in Equation (13), which
in turn depends on the eigenvectors of the matrix C∗ as shown in Equation (14).

Table 3 – Input values to get an initial estimate S0 = ((qL)0, (bLm)
0, P 0)

for the isothermal dew point calculation
known values required choice initial estimate

(qL)0 Ωa, Ωb, S0, S1, S2, R, ωi, Tci , Pci , cij , N , ε T ∗

(bLm)
0 Ωb, R, Tci , Pci y∗

P 0 P 0

Source: The authors.

The initial estimate of bLm is defined by the known fixed global composition of the vapor
phase z = y, obtaining

(bLm)
0 =

N∑
i=1

biy
∗
i , (39)

or, in other words, (bLm)
0 = bVm which is fixed by the vapor composition y∗.

Then we have the initial vector s0 = ((qL)0, (bLm)
0).

3 REDUCTION ALGORITHMS

In this Section, we show the algorithms used to apply the reduction method in the dew
point calculation, finding the zero of the function F described in the subsection 2.5. We write
Algorithm 1 to find the eigenvectors of the reduced matrix C∗ and with them calculate the
vector (qL)0, as shown in the subsection 2.7 and Algorithm 2 applies Newton method to the
reduced equilibrium thermodynamic system, Equation (30).
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Algorithm 1

Algorithm 1
1: Input: Ωa, Ωb, S0, S1, S2, R, ωi, Tci , Pci , cij (i, j = 1 : N), T ∗, y∗, P 0, ε, N ;
2: Construct the binary interaction matrix C with entries 1− cij ;
3: Obtain the r eigenvalues, λi, and eigenvectors, vi, of the binary interaction matrix C,

with | λi |≥ ε;
4: Compute

√
a using Equation (7d);

5: Construct the first r columns of matrix M , Equation (14);
6: Compute (qL)0, Equation (38);
7: Compute bi, using Equation (7d);
8: Compute (bLm)0, using Equation (39);
9: Assemble s0 = ((qL)0, (bLm)0) and S0 = ((qL)0, (bLm)0, P 0);

10: Output: S0, s0, bi(i = 1 : N), λi, vi(i = 1 : r), r.

Source: The authors.

The algorithm to solve the reduced system has to compute values of φL
i and its deriva-

tive, ultimately as functions of qL, bLm, P .

Algorithm 2

Algorithm 2
1: Input: Ωa, Ωb, S0, S1, S2, R, ωi, Tci , Pci , bi(i = 1 : N), cij(i, j = 1 : N), N , y∗,
λi, vi(i = 1 : r), r, s0, S0; T ∗, P 0, ε̄, η;

2: Compute the fugacity coefficient of the vapor phase, using Equation (6);
3: Construct the first r columns of matrix M , Equation (14);
4: Set ∆ = 1/ε̄(1, 0, · · · , 0) (a vector with large norm);
5: while ∥∆∥ ≥ ε̄
6: compute ∆ satisfying (Equation (36)) J(Sl)∆ = −F(Sl);

set Sl+1 = Sl +∆;
7: end while
8: Recover the liquid composition (Equation (22));
9: Output: Liquid composition, x, and pressure, P .

Source: The authors.

To compute F(Sl) and J(Sl), one needs to compute the values of φL
i and its derivatives

ultimately as functions of Sl = ((qL)l, (bLm)
l, P l). The steps for this are given next.
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Details of the 4th step (a) of algorithm 2

Details of the 4th step (a) of algorithm 2:
1: Compute am((qL)l) and φi((q

L)l) using Equation (19);
2: Compute A, B, Bi using Equations (7e), (7f);
3: Compute the roots of the PR equation of state, Equation (5), and choose the smallest root,
Z;

4: Compute the fugacity coefficient of the liquid phase, φi((q
L)l, (bLm)l, P l, T ∗), using

Equation (21);
5: Compute the derivatives of φi to ((qL)l, (bLm)l, P l, T ∗);
6: Compute F(Sl) and J(Sl).

Source: The authors.

Algorithm 3 is presented to compute a dew point curve, in the temperature versus pres-
sure plane. It is attained by successively applying Algorithm 2 to compute the pressure and
composition of the liquid phase for varying temperatures.

Algorithm 3

Algorithm 3
1: Input: Ωa, Ωb, S0, S1, S2, R, ωi, Tci , Pci , cij(i, j = 1 : N), T ∗, y∗, P 0, ε, N ,
bi(i = 1 : N), λi, vi(i = 1 : r), r, s0, S0, ε̄, η, T1, T2, ∆T , n (with T2 = T1 + n∆T );

2: for j = 0 : n

3: call Algorithm 1 with T ∗ = Tj = T1 + j∆T ;
4: call Algorithm 2;
5: end for
6: Output: λi, vi(i = 1 : r), (Tj , Pj), xj (j = 0 : n), time.

Source: The authors.

Figure 2 illustrates our framework with an example that uses only one non-null eigen-
value.

Figure 2 – Scilab code using spectral decomposition in dew point calculations

Source: The authors.
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4 RESULTS AND DISCUSSIONS

In this Section, we present the results obtained in the calculation of the dew curves,
implemented in Scilab 5.5 language3 and using an Intel CoreTM i5-3337U CPU at 1.80GHz,
with 4GB of RAM memory under 64-bit Windows operating system.

Using the developed framework described in Section 1, some comparisons were made
with the classical method, which does not use a reduction (i.e., solves the isofugacity equa-
tions). The mixtures used are denoted as MHA5 (referred as example 2 in the work of Mehra,
Heidemann e Aziz (1983), also analyzed by Kaul e Thrasher (1996)) and MI (referred as Mix-
ture 1 in the work of Gaganis e Varotsis (2013)), with 5 and 10 components respectively. Data
for mixtures MHA5 and MI are presented in Tables 4 and 5, respectively. The mixture MHA5
uses some components present in the mixture MI, so we use the same values for critical pres-
sure, Pci , critical temperature, Tci , and the acentric factor, ωi, given in Gaganis e Varotsis
(2013). The binary interaction parameters for the mixture MHA5 were obtained from Kaul e
Thrasher (1996) and presented in Table 4. For the mixture MI, all binary interaction parameters
are set to zero, except the ones relating methane with some other components, represented in
Table 5 as cC1−j (Gaganis; Varotsis, 2013).

Table 4 – Data for mixture MHA5
Components z Tci(K) Pci(bar) ωi cC2−j cC3−j cnC4−j cnC5−j cnC6−j

C2 0.39842 305.33 48.71 0.099 0.000
C3 0.29313 369.85 42.47 0.152 0.002 0.000
nC4 0.20006 425.25 37.92 0.199 0.005 0.001 0.000
nC5 0.07143 469.80 33.75 0.251 0.009 0.003 0.001 0.000
nC6 0.03696 507.90 30.35 0.299 0.012 0.005 0.002 0.000 0.000

Source: Research data (Mehra; Heidemann; Aziz, 1983; Kaul; Thrasher, 1996; Gaganis; Varotsis, 2013).

Table 5 – Data for mixture MI
Components z Tci(K)} Pci(bar) ωi cC1−j

C1 0.35 190.55 45.99 0.011 -
C2 0.03 305.33 48.71 0.099 0.000
C3 0.04 369.85 42.47 0.152 0.000
C4 0.06 425.25 37.92 0.199 0.020
C5 0.04 469.80 33.75 0.251 0.020
C6 0.03 507.90 30.35 0.299 0.025
C7 0.05 540.15 27.35 0.350 0.025
C8 0.05 568.95 24.90 0.397 0.035
C10 0.30 617.65 21.05 0.490 0.045
C14 0.05 693.00 16.10 0.654 0.045

Source: Research data (Gaganis; Varotsis, 2013).

3Scilab 5.5 is distributed under CeCILL license.
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A family of reduction methods is obtained by relaxing the level of approximation of C
by C∗. Specifically, we let ε in Equation (9) to increase, resulting in r-reduction methods with
r = 3, 2 and 1 eigenvalues. Clearly, a decrease in r implies a stronger reduction.

The eigenvalues and eigenvectors for the mixtures considered are listed in Tables 6 and
7. For the mixture MHA5 with ε = 4 × 10−4, we have three eigenvalues, λ1, λ2 and λ3 and
their respective eigenvectors v1, v2 and v3, represented in Table 6. With ε = 1 × 10−2, we
have two eigenvalues, λ1 and λ2, and with ε = 0.02 only one eigenvalue remains. A similar
analysis can be conducted for the mixture MI, using three tolerances: 1× 10−6, 0.03, and 0.08,
as detailed in Table 7. The tolerance of the Newton method was set to ε̄ = 1 × 10−6 and we
used η = 1 for both mixtures (see sub-section 2.6).

Table 6 – Mixture MHA5: eigenvalues of the binary interaction matrix with
ε = 4× 10−4 and corresponding eigenvectors

1 2 3 4 5 λ
v1 0.44613 0.44766 0.44784 0.44748 0.44694 λ1 4.98400
v2 −0.71436 −0.25145 0.06023 0.36809 0.53603 λ2 0.01539
v3 0.47079 −0.39961 −0.66228 0.25294 0.34067 λ3 0.00056

Source: The authors.

Table 7 – Mixture MI: eigenvalues of the binary interaction matrix with
ε = 1× 10−6 and corresponding eigenvectors

1 2 3 4 5 6
v1 0.31074 0.31757 0.31757 0.31695 0.31695 0.31679
v2 −0.80423 −0.18402 −0.18402 0.04364 0.04364 0.10056
v3 −0.50659 0.48693 0.48693 0.12512 0.12512 0.03467

7 8 9 10 λ
v1 0.31679 0.31648 0.31617 0.31617 λ1 9.95735
v2 0.10056 0.21439 0.32823 0.32823 λ2 0.07065
v3 0.03467 −0.14623 −0.32714 −0.32714 λ3 −0.02800

Source: The authors.

To exemplify how eigenvalues and eigenvectors are selected according to a tolerance,
we use the mixture MHA5, with the binary interaction parameters given in Table 4. Using the
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spectral decomposition, we obtain, through Equation (8)

C =


1− 0.000 1− 0.002 1− 0.005 1− 0.009 1− 0.012

1− 0.002 1− 0.000 1− 0.001 1− 0.003 1− 0.005

1− 0.005 1− 0.001 1− 0.000 1− 0.001 1− 0.002

1− 0.009 1− 0.003 1− 0.001 1− 0.000 1− 0.000

1− 0.012 1− 0.005 1− 0.002 1− 0.000 1− 0.000



= −0.00024


−0.00230
−0.20997
0.08910

0.74695

−0.62451

 (−0.00230 − 0.20997 0.08910 0.74695 − 0.62451)

+ 0.00027


0.26267

−0.72978
0.59097

−0.20576
0.08261

 (0.26267 − 0.72978 0.59097 − 0.20576 0.08261)

+ 0.00056


0.47079

−0.39961
−0.66228
0.25294

0.34067

 (0.47079 − 0.39961 − 0.66228 0.25294 0.34067)

+ 0.01539


−0.71436
−0.25145
0.06023

0.36809

0.53603

 (−0.71436 − 0.25145 0.06023 0.36809 0.53603)

+ 4.98400


0.44613

0.44766

0.44784

0.44748

0.44694

 (0.44613 0.44766 0.44784 0.44748 0.44694). (40)

Given a tolerance ε = 4×10−4, we select the three largest eigenvalues and their respec-
tive eigenvectors (see Equation (9)). Then, the matrix C is approximated by the reduced rank
matrix (see Equation (10))
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C∗ = 0.00056


0.47079

−0.39961
−0.66228
0.25294

0.34067

 (0.47079 − 0.39961 − 0.66228 0.25294 0.34067)

+ 0.01539


−0.71436
−0.25145
0.06023

0.36809

0.53603

 (−0.71436 − 0.25145 0.06023 0.36809 0.53603)

+ 4.98400


0.44613

0.44766

0.44784

0.44748

0.44694

 (0.44613 0.44766 0.44784 0.44748 0.44694)

=


1.0010702 0.9970882 0.9933694 0.9915972 0.9887815

0.9970882 1.0006583 1.0004416 0.9963989 0.9943479

0.9933694 1.0004416 1.0021064 0.9981939 0.9968189

0.9915972 0.9963989 0.9981939 1.0004314 1.0003027

0.9887815 0.9943479 0.9968189 1.0003027 1.0006526

 (41)

Calculating the Frobenius norm of the matrices C and C∗ we have ∥C∥F = 4.9840333,
∥C∗∥F = 4.9839563 and ∥C − C∗∥F = 0.0050498. Thus, the error is given by ∥C−C∗∥F

∥C∥F
=

0.0010132. A similar analysis can be conducted with smaller rank matrices, that is, with two
or one eigenvalue.

The numerical rank of the matrix C can be obtained by using a simple Scilab command:
[U,S,V,rk] = svd(C,4e-4), where 4e-4 refers to the tolerance for the eigenvalues and rk is the
numerical rank of the matrix. In this case, we obtain rk = 3, for C and C∗, as expected.

With less eigenvalues and eigenvectors, the thermodynamic equilibrium system, Equa-
tion (30), exhibits a smaller number of equations (r + 2).

The temperature range (in Kelvin scale, K) for the mixture MHA5 is T = [350; 390].
Similarly, we use the range T = [500; 570] for the mixture MI. The initial estimate of the
pressure used is P 0 = 10 bar for the mixture MHA5 and P 0 = 1 bar for the mixture MI.
The pressure values computed for each chosen temperature range generate dew curves that are
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shown in Figures 3 and 4, respectively for mixtures MHA5 and MI.

Figure 3 – a) Dew point curve for the mixture MHA5. b) Enlarged portion of the dew
point curve for the mixture MHA5

Source: The authors.

Figure 4 – a) Dew point curve for the mixture MI. b) Enlarged portion of the dew point
curve for the mixture MI

Source: The authors.

An enlarged portion of Figures 3(a) and 4(a) are given in Figures 3(b) and 4(b), where
we observe the proximity of the dew point curves obtained by all r-reduction methods
(r = 3, 2, 1) and the classical method.

The percentage error of the reduction is calculated according to the following expres-
sion:

error =
∣∣∣∣PReduction − PClassic

PClassic

∣∣∣∣× 100. (42)

Figure 5 shows that the percentage errors are quite small in all reduction cases considered in
both mixtures. However, it is clear that for MHA5 mixture, the behavior of the percentage
error, although small, is very different when only one eigenvalue is considered. Moreover, for
the MI mixture, even though the error is small in all reduction methods, it is clear that the
approximation is much better when 3 eigenvalues are considered, instead of 1 or 2.
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Figure 5 – Percentage error in the calculation of the pressure using r-Reduction method
with r = 1, 2, 3 for the: a) mixture MHA5, b) mixture MI
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Source: The authors.

Table 8 presents the elapsed time for the reduction and classic methods, for both mix-
tures, for different quantities of eigenvalues. The table also presents the number of equations
solved in each situation. Regarding the elapsed time, all reduction methods reduced it, as shown
in Table 8. For 1-reduction method applied to the mixture MHA5, the elapsed time is less than
21 percent of the time required by the classic method. Considering the mixture MI, 1-reduction
method takes approximately 11.8 percent of the time required by the classic method.

Table 8 – Elapsed time in seconds for mixtures MHA5 and MI
Mixture Method Number of Time (s) Number of

eigenvalues r equations
Classic – 29.26 N = 5

MHA5
3-Reduction 3 11.44 r + 2 = 5
2-Reduction 2 8.70 r + 2 = 4
1-Reduction 1 6.13 r + 2 = 3

Classic – 178.57 N = 10

MI
3-Reduction 3 38.11 r + 2 = 5
2-Reduction 2 28.42 r + 2 = 4
1-Reduction 1 20.94 r + 2 = 3

Source: The authors.

Finally, it is possible to obtain the compositions of the incipient phases after the con-
vergence of the method for the mixtures, using the last temperature for each example, T = 390

K and T = 570 K, respectively. Results for mixtures MHA5 and MI are presented in Tables 9
and 10, including the results obtained by the classic method, for comparison.
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Table 9 – Results for liquid composition vector x for mixture MHA5, with T = 390 K
x1 x2 x3 x4 x5

Classic 0.25353 0.26684 0.25903 0.12881 0.09177
3-Reduction 0.25283 0.26659 0.25925 0.12914 0.09216
2-Reduction 0.25290 0.26659 0.25920 0.12914 0.09221
1-Reduction 0.25276 0.26653 0.25923 0.12922 0.09224

Source: The authors.

Table 10 – Results for liquid composition vector x for mixture MI, with T = 570 K
x1 x2 x3 x4 x5

Classic 0.0582087 0.0073516 0.0129007 0.0254645 0.0219082
3-Reduction 0.0581025 0.0073404 0.0128838 0.0254366 0.0218887
2-Reduction 0.0561642 0.0070663 0.0124159 0.0247125 0.0213145
1-Reduction 0.0626781 0.0077324 0.0135009 0.0264039 0.0225927

x6 x7 x8 x9 x10
Classic 0.0210672 0.0445856 0.0564696 0.5363523 0.2156916

3-Reduction 0.0210528 0.0445638 0.0564531 0.5364032 0.2158751
2-Reduction 0.0205973 0.0437057 0.0558614 0.5383216 0.2198381
1-Reduction 0.0215780 0.0454255 0.0570097 0.5329624 0.2094585

Source: The authors.

5 CONCLUSIONS

In this paper, dew point geometries are obtained for two test mixtures (referred as
MHA5 and MI) using a dimensionality reduction algorithm on a PR state equation formula-
tion, and a spectral approximation of the binary interaction coefficients matrix.

We scrutinized the formulation of the reduced equations based on a linear paramete-
rization of the incipient phase using cubic equations of state and classical mixing rules. The
formulation obtained represents a reduced isofugacity system of equations, as obtained previ-
ously by Nichita (2008).

The primary purpose of the reduction technique is to solve a smaller set of nonlinear al-
gebraic equations when solving vapor-liquid thermodynamic equilibrium problems to diminish
the elapsed time, without impairing the accuracy of the results. The results obtained with the
reduction technique are compared with those produced by classical method (resolution of the
isofugacity equations).

It is also seen that the method is quite efficient when a larger reduction in the rank of the
matrix C is applied, considering a smaller number of eigenvalues and their respective eigenvec-
tors, and this is also more advantageous when a mixture with a larger number of components
is used.

In addition to allowing the dimensionality of the problems to be reduced, the reduc-
tion method guarantees the accuracy of the results. Even if several non-zero eigenvalues are
neglected, the calculated dew pressures still remain close to those produced with the classical
methodology.
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These results – added to the computational framework developed in Scilab 5.5 language
– can be an useful tool in advanced undergraduate courses in Thermodynamics, permitting the
understanding of the computational gains of the spectral reduction (in terms of computation
times), which can be a critical factor in simulation tools.
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