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Alternative specification and correctness proofs of the distributed network reachability algorithm

Abstract

The Distributed Network Reachability algorithm (DUARTE-JR; WEBER; FONSECA, 2012)
allows every node in a general topology network to determine which portions of the network
are reachable and unreachable. The algorithm consists of three phases: test, dissemination,
and reachability computation. During the testing phase each link is tested by one of the
adjacent nodes at alternating testing intervals. Upon the detection of a new event, the tester
starts the dissemination phase. In this work we both give an alternative specification of
DNR that employs tokens at the testing phase allowing the pair of nodes connected by a
link to share testing responsibilities, and give an alternative set of proofs for the algorithm.
Keywords: Network reachability. Distributed diagnosis. Token-based testing assign-

ment. Partitionable systems. Healing networks.
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1 INTRODUCTION

Organizations and individuals increasingly depend on the correct behavior of network-
based systems. In order to improve the dependability of any computer system, the first step
is to have a dependable monitoring strategy. In particular, considering networks of arbitrary
topology, it is important to be able to determine at any instant of time which portions of the net-
work are reachable and which portions are unreachable. In this work we present an alternative
specification and set of proofs of the Distributed Network Reachability (DNR) algorithm. The
algorithm was originally published at (DUARTE-JR; WEBER; FONSECA, 2012) and presents
a fault-tolerant approach for on-line network monitoring.

The alternative specification and correctness proofs presented in this paper are impor-
tant because as they give a different perspective on the algorithm, they allow a comprehensive
understanding of its main principles. The set of proofs presented in (DUARTE-JR; WEBER;
FONSECA, 2012) is based on the theoretical framework known as Bounded Correctness (SUB-
BIAH; BLOUGH, 2004). In this paper we employ a set of proofs which does not rely on that

framework, and may be more intuitive for readers which are not familiar with it.

The system model employed assumes a general topology network in which there is not
necessarily a communication channel between any pair of nodes. Both nodes and links may be
either faulty or fault-free at a given instant of time. We consider both crash and timing faults;
a fault may partition the network. Considering a pair of nodes connected by a link, if the tests
executed on one node by the other determines that the link is unresponsive, it is impossible to
determine whether the tested node or the link is faulty. In this way, faults in a general topology
network are said to be ambiguous (DUARTE-JR. et al., 1997). In the proposed algorithm, a
node may assume one of two states: working or perceived unreachable. A timeout on a test
executed on a given node corresponds to a perceived unresponsive state that is recorded as an
event. A link may be either working, unresponsive or perceived unreachable. A node considers
a link to be perceived unreachable when the link is not adjacent to any other reachable fault-free

node.

System-level diagnosis (MASSON; BLOUGH; SULLIVAN, 1996) of general topology
networks was first proposed by Bagchi and Hakimi in (BAGCHI; HAKIMI, 2002). Their al-
gorithm cannot be used for continuous network connectivity monitoring because it is executed
off-line. In (STAHL; BUSKENS; BIANCHINI, 1992) Bianchini and Buskens introduced and
evaluated through simulation the Adapt algorithm, which can be executed on-line: when a given
node becomes faulty, a new phase begins in which other nodes reconnect the testing graph. The

algorithm employs a distributed procedure that employs a sequential event dissemination strat-
egy.

Rangarajan, Dahbura and Ziegler (RANGARAJAN; DAHBURA; ZIEGLER, 1995) in-
troduced the RDZ algorithm for system-level diagnosis for networks of arbitrary topology that
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can be executed on-line. The algorithm builds a testing graph that guarantees the optimal num-
ber of tests, i.e., each node has one tester. Furthermore it presents the best possible diagnosis
latency by using a parallel dissemination strategy. Whenever a node detects an event, it sends
diagnostic information to all its neighbors, which in turn send the information to all its neigh-
bors, and so on. Although the RDZ algorithm presents the best possible diagnosis latency, and
the best possible number of testers per node, it only guarantees the eventual diagnosis of the so

called jellyfish fault configuration.

A diagnosis algorithm for non-broadcast network diagnosis was introduced in (DUARTE-
JR. et al., 1997). The algorithm is based on a token-based testing strategy which was later mod-
ified (SIQUEIRA; FABRIS; DUARTE-JR, 2003) so that nodes connected by a link alternate in
the roles of tester and tested node. The algorithm assumes a static fault situation, i.e. a new event
only occurs after the previous event has been completely diagnosed. Partitions are not allowed.
A diagnosis algorithm for computing network connectivity was introduced in (DUARTE-JR;
WEBER, 2003) which supports dynamic events, i.e. during the dissemination phase new events
may occur and the diagnosis of all events is guaranteed within a given latency. Later another
testing strategy was developed (WEBER; DUARTE-JR.; FONSECA, 2003) that deals with sit-
uations in which adjacent nodes are repaired and start testing each other simultaneously. These

algorithms do not support network partitions.

All the algorithms above were proven to be correct under a static fault situation, in which
anode or link is assumed to change state only after the diagnosis of a previous event completes.
Subbiah and Blough introduced in (SUBBIAH; BLOUGH, 2004) a formal model of the dy-
namic behavior of diagnosis algorithms, called Bounded Correctness, which allows a diagnosis
algorithm to be rigorously proven to be correct under a dynamic fault situation. Bounded Cor-
rectness has three goals. The first goal is to show how quickly a working node learns about
every event in the system. The second goal is to show that the views that recovering nodes ob-
tain about the state of other nodes are out-of-date by only a bounded amount. Finally the third
goal is to show that working nodes do not detect any spurious events. In the same work, the
authors introduce algorithm ForwardHeartbeat, which allows the diagnosis of general topology
networks in a dynamic fault situation. The algorithm implements tests implicitly by having
every fault-free node send heartbeat messages at predefined time intervals. ForwardHeartbeat

does not allow network partitions.

The Distributed Network Reachability (DNR) algorithm for which we describe a speci-
fication alternative to the one presented in (DUARTE-JR; WEBER; FONSECA, 2012) employs
a testing strategy that guarantees the optimal number of tests per testing interval, as long as the
clock of any node does not run twice or more as fast as its neighbors’ clocks. Upon the detec-
tion of a new event, i.e. the change of the perceived state of a tested link, a message carrying
new diagnostic information is disseminated to the other reachable nodes. New events can occur
at any time during the execution of the algorithm. Whenever an event is detected or informed,

a graph connectivity algorithm is employed to compute the network reachability from the per-
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spective of any node. The specification presented in this paper is based on the idea that nodes
exchange a token, so that the node which has the token is the tester for the corresponding link

in the present testing interval.

The rest of the paper is organized as follows. In section 2 the system model and the
alternative algorithm specification are given. In section 3 we prove the correctness of the testing
phase. Section 4 presents proofs of correctness of the dissemination phase. Section 5 concludes

the paper.

2 THE DISTRIBUTED NETWORK REACHABILITY ALGORITHM

In this section, the system model is given and the alternative specification of the DNR

algorithm is presented.

2.1 Diagnosis and System Model

Consider a network or system of arbitrary topology, which is represented by a graph
S = (V(S),E(S)) where V(5) is a set of N vertices or nodes, ng, ni,...,ny_1, and E(S) is
the set of undirected edges or links. We alternatively refer to node n; as node i. Each edge that
connects node ¢ and node j is represented by the pair (i, 7). Node 7 and node j are then said to

be neighbors.

The system is synchronous, but timing faults are also possible, in the sense that a node
may be slower than expected to execute tasks or send messages. Both nodes and links can
become faulty by crashing. A crashed link corresponds for instance to a severed physical link.
Working links are assumed to offer a reliable communication service. A fault may partition
the network, which can later heal as faulty units recover. Nodes are diagnosed as working or
perceived unreachable, and links are diagnosed in one of three states: working, unresponsive or

perceived unreachable.

An event is defined as a change of the state of a system unit. An event is always recorded
as a link state change, even if it occurred at a node. The link state change is either from working

to unresponsive or from unresponsive to working.
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2.2 Algorithm Description

The Distributed Network Reachability (DNR) algorithm is executed on-line continu-
ously: nodes periodically execute tests on adjacent links. Upon the detection of a new event
on an adjacent link, the tester starts the dissemination of new event information to reachable
working nodes. At any time a node can run a graph connectivity algorithm locally to compute

the network reachability.

A test assigment for system S at a given testing interval is represented by a directed
graph, T'(S) = (V(95), A(S)), where the set of vertices corresponds to network nodes, and
A(S) is the set of arcs correponding to the tests executed. An arc (i, j) directed from node
¢ to node j corresponds to a test executed by node ¢ on node j. DNR employs a dynamic
testing assignment, in the sense that two nodes connected by a communication link alternate in
the roles of fester and tested. The link connecting those nodes is called the fested link. Tests
are assumed to consist of a complete procedure tailored to the system technology. Tests are

executed periodically at a testing interval.

Nodes keep a local view of the network topology represented as a graph, in which a
timestamp 1is kept for each link. Timestamps are event counters, similar to those employed in
(RANGARAIJAN; DAHBURA; ZIEGLER, 1995). The timestamps for all links are initially set
to 1, and all links are assumed to be unresponsive. Every time a new event is detected, the
timestamp for that link is incremented. Thus an even timestamp corresponds to a working link;

an odd timestamp corresponds to an unresponsive link.

After a node starts-up or is repaired, it waits a pre-defined time interval called node
recovery wait time (SUBBIAH; BLOUGH, 2004) before sending or responding either test or
dissemination messages. This interval guarantees that unresponsive links are always detected,
even if the node quickly recovers. At start-up, after the node recovery wait time elapses, a
node running the algorithm tests all its neighbors. As a tested node receives a test request it
also determines the tester is working; this strategy is called a rtwo-way test (DUARTE-JR. et al.,
1997).

DNR employs a token-based test assignment based on two-way tests. Each pair of nodes
connected by a link keeps one token. The node that has the token at the start of a given testing
interval is the tester. If the test is successful, the token is transferred, inverting the nodes’ roles.
As long as no events occur, the process is repeated, guaranteeing that only one test is executed

per link per testing interval.

Even in case the link is tested as unresponsive, 1. e. the tester times out waiting for a
reply, the token is released. In order to guarantee that the detected unresponsiveness is correctly
diagnosed, even if it corresponds to a timing fault, the tester does not communicate on the link
for a pre-defined time interval called link recovery wait time. In one more interval, after the

previous tester has assumed the role of tested node and detects it has not been tested, the token
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is recreated. The node then becomes the tester again, and executes a test at the next interval. As
long as no new events are detected, a test is executed each two testing intervals. On the other
hand, if the tester for the next testing interval becomes faulty, while the tested node remains
fault-free, the token disappears. The proposed strategy leads the tested node to detect that it
wasn’t tested and in the next testing interval a token is created and the node assumes the role
of tester, also executing a test each two intervals. As soon as a faulty node recovers it creates a

token and starts up as described above.

In case both nodes become faulty, no test is executed on the link. If both nodes are
repaired at roughly the same time and become testers, a notable situation arises: both create
tokens and may execute simultaneous tests. A similar situation arises when a faulty node recov-
ers and tests a neighbor at the same time it is tested by that neighbor. The algorithm employs a
strategy in order to prevent that both nodes become testers at the same interval. As both receive
a test request, one from each other, only the node with the smaller identifier will reply to the

test, thus becoming the tested node.

The testing strategy also works correctly if the link is faulty or messages arrive later
than expected, while both connected nodes are working. In this case both nodes will eventually
create tokens and each will run a test once every two testing intervals. After the link recovers,
the first test issued by one of the nodes causes the other to reply and become the tester for the

subsequent interval. Simultaneous tests may also occur and are solved as described above.

Upon the detection of a new event on an adjacent link, the tester starts the dissemination
of a message with the new information. An event corresponds to an adjacent working link be-
coming unresponsive or vice versa. The dissemination message contains information about new
events. The information consists of (1) the tester identifier, (2) the tested node identifier, and (3)
the corresponding timestamp. The algorithm employs a simple parallel dissemination strategy
with latency proportional to the network diameter. The node that starts the dissemination sends
the message on all its working adjacent links. Dissemination messages are acknowledged. A
node that receives a dissemination message verifies whether the message contains new infor-
mation or not. Information is new when a received timestamp is greater than the corresponding
timestamp stored in the local link state table. Old information is discarded. If the message
contains new information, it continues to be disseminated. The node forwards the message on

all adjacent links, except the link(s) from which the message arrived.

After a dissemination is started and before it completes, new events may occur. Further-
more, a node may detect new events during the dissemination, e.g. it may send a message on a
link considered to be working and detect the link has become unresponsive. If two or more dis-
seminations start concurrently at different nodes of the same connected component, they may

arrive simultaneously at some node, from which they proceed and complete independently.

Notably, a node or link fault that partitions the network confines the dissemination to

one or more connected components. As opposed to it, the occurrence and detection of a healing
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event may have the opposite effect: the message will reach previously unreachable portions
of the network. When a working node receives information about an unresponsive link, it
computes the network reachability and sets the timestamps of every unreachable link to 1, the

smallest possible timestamp.

A healing event is defined by an unresponsive link being detected as working. This may
or may not cause two or more partitions to merge in one connected component. If partitions are
merged, nodes in each partition must take into account the events that occurred at previously
unreachable units. A healing event is detected as a test request arrives from a link considered
to be unresponsive. In this case a healing message is employed, which carries information
about link state table entries with timestamps greater than 1. Upon the reception of a healing
message, the tester first updates its local link state table with new information, then increments
the timestamp of the healed link and starts the dissemination of full link state table information
to all its neighbors. Only new information is further disseminated. This strategy allows both

nodes to exchange information about previously unreachable components.

A particular case happens if a node crashes and recovers several times while its neigh-
bors remain working, then those nodes successively increment the timestamps of the links ad-
jacent to the node. When that node recovers, it must receive link state table information from
its neighbors before incrementing the timestamps of its healing links. Another special case oc-
curs when a node becomes faulty just after sending a test request to a recovering node. If the
recovering node then assumes the role of tested for that link, due to simultaneous tests, its test
reply arrives at the tester when that node is faulty and the healing does not complete. Thus the

timestamp for that link must not be incremented.

2.3 Algorithm Specification

The specification presented here is an alternative version of the specification present in
(DUARTE-JR; WEBER; FONSECA, 2012). This specification describes the alternance of the

roles of the nodes connected by a link as testers and tested based on the exchange of a token.

The testing strategy is given in pseudo-code in figures 1, 2 and 3. Figure 1 shows the
local data structures kept by a node running DNR, and the initialization procedure. An Event
is described by a link identifier Link Id, which consists of the identifiers of the tester and the
tested nodes, and by the corresponding Timestamp. LinkStateTable is the data structure
that keeps the local view of the topology. Token[j] and TokenTurn [ j] are variables used
to control the token exchange. TestRequestSent [ ]] and TestRequestReceived|[j]
are used to detect simultaneous tests. The TestingInterval[]j] timer is used to define
the period of time a test is executed; the Test Timeout [ j] timer defines the corresponding

timeouts employed to conclude link unresponsiveness.
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As shown in Figure 1, when the node is first initialized or recovers, the NodeReco-
veryWaitTime timer is started. The node delays sending test requests until the timer expires.
As Token [ J] is set to TRUE at the initialization of the algorithm, the node is forced to test all

its neighbors after the node recovery wait time.

Figure 1 — DNR Algorithm: Initialization and Startup.
Distributed Network Reachability Algorithm Executed by Node i

define Nodeld = node’s network address;
Timestamp = counter;
Linkld = (Nodeld, Nodeld);
Event = (Linkld, Timestamp);
Message = list of Event;

var LinkStateTable: array[Linkld] of Timestamps;
Token, TokenTurn: array[Nodeld] of Boolean;
TestRequestSent, TestRequestReceived: array[Nodeld] of Boolean;
Testinglnterval, TestTimeout: array[Nodeld] of Timers;
NodeRecoveryWaitTime, LinkRecoveryWaitTime: Timer;

Start&RunForever()
for all links do LinkStateTable[Linkld] = 1; end for
for each neighbor j
Token[j] = TRUE;
TokenTurn[j] = FALSE;
TestRequestSent|j] = FALSE;
TestRequestReceived|j] = FALSE;
start_timer NodeRecoveryWaitTime;
end for
when NodeRecoveryWaitTime timer expires
for each neighbor j
expire_timer Testinglnterval[j];
end for
end when
while TRUE do
for each neighbor j
when TestingInterval[j] timer expires
restart_timer Testinglnterval[j];
TokenTest(j)
end when
end for
end while

In figure 2 module TokenTest (J) shows the strategy for alternating the token. If the
node running the algorithm has the token and is supposed to test a neighbor j in the next testing
interval, the RunTest (J) module is executed and the token is released as Token [ j] is set
to FALSE. Otherwise, if a link turns out to be unresponsive, i.e., Token [ j] is set to FALSE and
TokenTurn [ j] is also set to FALSE, then TokenTurn [ j] is set to TRUE to cause a test to
be executed in the next testing interval. In case Token [ j] is FALSE but TokenTurn|[J] is

TRUE, a new token is created and TokenTest () is called.
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Figure 2 — DNR Algorithm: Testing strategy as executed by a tester.
Distributed Network Reachability Algorithm Executed by Node i

|| Module: TokenTest(j)
if Tokenl[j]
then Token[j] = FALSE;
RunTest(j);
else if TokenTurn|j]
then TokenTurn[j] = FALSE;
Token|[j] = TRUE;
TokenTest(j);
else TokenTurn[j] = TRUE;
end if
end if

|| Module: RunTest(j)
if (LinkStateTable[i,j] mod 2 = TestRequest(j)) /* new event detected */
then if (LinkStateTable[i,j] mod 2 != 0) /* healing event */
then update LinkStateTable with new info;
LinkStateTable[i,jl++;
Event-Disseminate(LinkStateTable); /* send timestamps > 1 */
else LinkStateTableli,jl++;
Event-Disseminate(msg with new info);
during LinkRecoveryWaitTime ignore msgs to/from link(i, )
end if
run local graph connectivity algorithm;
for all unreachable links do LinkStateTable[Linkld] = 1; end for;
end if

|| Module: TestRequest(j)
send(j, test request);
TestRequestSent[j] = TRUE;
TestRequestReceived|j] = FALSE;
start_timer TestTimeout|j];
when the test reply from j arrives
reset_timer TestTimeout[j];
return 0; /* working */
end when
when TestTimeout|j] expires
if TestRequestReceived|j]
then Token[j] = TRUE;
end if
return 1; /* unresponsive */
end when

RunTest (7J) is called by the node that has the token and executes the test proce-
dure. If the link turns out to be unresponsive, the dissemination of a message containing
information about the event is started. Furthermore, during the interval specified by timer
LinkRecoveryWaitTime, node i ignores all messages to/from link (i, j) in order to guaran-
tee that the detected unresponsiveness is correctly diagnosed, even if it corresponds to a timing

fault. In case of a healing event, the full link state table, updated with information received from
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the tested node, is disseminated. A graph connectivity algorithm is run to compute the network
reachability. Timestamps of unreachable links are set to 1 in order not to be disseminated as

spurious events in case of a healing.

TestRequest (J) describes the testing procedure. The Test Timeout [ j] timer is
initialized and a test request is sent to the tested node j. Variables TestRequestSent [j]
and TestRequestReceived[j] are set each time a test request is sent, in order to allow

the detection of simultaneous tests, as shown below.

In figure 3, module TestReply (j) corresponds to the procedure run by the tested
node as it replies to a test request. The token is exchanged, as Token[j] is set to TRUE.
Furthermore, as tests are two-way, when a test request arrives from a link considered to be
unresponsive, the tested node detects a healing event on that link. The LinkStateTable of
the tested node is then sent to the tester as a reply. Finaly, the TestingInterval[Jj] timer

is restarted.

Figure 3 — DNR Algorithm: Testing strategy as executed by the tested node.
Distributed Network Reachability Algorithm Executed by Node i

|| Module: TestReply(j)
when a test request from j arrives
Token[j] = TRUE;
TokenTurn|j] = FALSE;
if TestRequestSent|j] /* simultaneous testing */
then TestRequestSent|[j] = FALSE;
ifv >
then Token[j] = FALSE; /* it’s i’s turn to test */
TestRequestReceived|j] = TRUE;
return;
else reset_timer TestTimeout[j];
end if
end if
restart_timer Testinglnterval[j];
if (LinkStateTable[i,j] mod 2 != 0) /* healing event detected */
then send(j, test reply with LinkStateTable); /* send timestamps > 1 */
else send(j, test reply);
end if
end when

Variable TestRequestSent [ j] is checked to determine whether simultaneous tests
have occurred. Node ¢ running DNR detects simultaneous tests when a test request arrives
from node j and the local TestRequestSent [j] is set to TRUE. A criterion based on the
identifier of the nodes is used to solve the problem, and guarantees that only one node is the
tester for the next interval. The node with the smaller identifier sends a test reply and resets the

corresponding Test Timeout entry.

In a very particular case, the test request sent by node ¢ arrives at node j while node

7 1s still in the node recovery wait time. In this case if node j completes the node recovery
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wait time and sends a test request to ¢ before 7 times out on the expected reply, simultaneous
tests are detected by node ¢ but not by node j. If node 7 has the largest identifier, it would
become the tester if simultaneous tests were detected, but both nodes time out waiting for the test
replies. In order to avoid this situation, the node with the largest identifier sets the corresponding
TestRequestReceivedentry to TRUE upon detecting simultaneous tests. If that node times
out, it resets the corresponding Token entry to TRUE in order to test again in the next testing
interval. Then the healing event will be detected. This is the only situation in which the same

node tests in two consecutive testing intervals.

The specification of the dissemination strategy is shown in figure 4. A Message con-
sists of a list of Events. No message identifier is required, because the list of events is enough
to make each message unique. LinkStateTable is the data structure used to keep the local
view of the topology, Timestamps are initially set to 1, and are updated with every event

detected on an adjacent link or informed with a dissemination message.

Figure 4 — DNR Algorithm: Dissemination of new event information.
Distributed Network Reachability Algorithm Executed by Node i

|| Module: Event-Disseminate(msg)
for each node j neighbor of node i
if (j != msg’s senders)
then if ((LinkStateTableli,j] mod 2 == 0) and (send(j, msg) does not succeed)) /* fault event detected */
then LinkStateTableli,jl++;
Event-Disseminate(msg with new info);
during LinkRecoveryWaitTime ignore msgs to/from link(i, j)
run local graph connectivity algorithm;
for all unreachable links do LinkStateTable[Linkld] = 1; end for
end if
end if
end for

|| Module: Receive(msg)
when a dissemination message from j arrives
if (msg has new information)
then Event-Disseminate(msg with new info);
update LinkStateTable with new info;
run local graph connectivity algorithm;
for all unreachable links do LinkStateTable[LinkId] = 1; end for
end if
end when

The dissemination is started when a new event is detected (Module RunTest (J)).
Event-Disseminate (msg) is called and receives as parameter the message to be dissem-
inated. In case of a fault event, this event alone is disseminated. In the case of a healing
event, a message is sent to neighbors with an extract of the local view of the topology kept in
LinkStateTable.
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Event-Disseminate (msg) isexecuted to send the message to each neighbor. Nev-
ertheless, as the message is sent, a fault event may be detected that triggers a new dissemination.
If this occurs, during an interval equal to the LinkRecoveryWaitTime node i ignores all
messages to/from link (i, j). As is always the case when a new event is detected, the local

connectivity algorithm is run, allowing the timestamps of unreachable links to be reset to 1.

Receive (msg) employs the criterion based on timestamps to determine if a received
message carries new information. Old information, if any, is discarded. After Event-Disse-
minate (msg) is executed, the local LinkStateTable is updated. The message is for-
warded on all links, except the one(s) from which it arrived. The local graph connectivity

algorithm is run.

3 TESTING PHASE PROOFS

In this section we prove both the correctness of the testing phase and its worst-case
detection latency. We show that the algorithm is optimal: even if two nodes start up or recover
and test each other simultaneously, the algorithm guarantees that from the next interval on the
nodes alternate testing their adjacent link in successive testing intervals. If both nodes connected
through a working link are also working, then the algorithm guarantees that only one test is

executed per link per testing interval.

The proof is organized as follows. First we show that after a node starts up it tests every
adjacent link once every two testing intervals. Then we prove that after a new event occurs on
a link adjacent to a working node, the node continues testing the link once every two testing

intervals. Then we use this for prooving the worst-case event detection latency of the algorithm.

DEFINITION 1. An unresponsive link adjacent to a working node is said to heal if either
the neighbor starts up, while the link remains working, or both nodes remain working while

their adjacent unresponsive link recovers. The corresponding event is called a healing event.

The testing algorithm is based on a control message called a foken that is exchanged
by two working nodes through a working communication link in successive testing intervals.
The testing interval is a time interval after which a given node that has a token executes a test.
Nodes are not synchronized with each other, and do not share a global clock. The tester restarts
its testing interval after sending a test request. The tested node also restarts its testing interval

upon receiving the test request.

As soon as a working node running DNR sends a test request, it releases the token and
becomes the tested node for the next testing interval. Likewise, as soon as a working node
running DNR receives a test request, it replies and obtains the token, becoming the tester for
the next testing interval. The tester also releases the token even if it sends a test request and the

tested node does not reply, i.e. if the adjacent link is unresponsive. A new token is created if
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none is received in two consecutive testing intervals.

We assume that the difference of the clock speeds of any two neighbors is less than one
the double of the other. We later show what happens when one of the clocks is twice or more
faster than the other.

DEFINITION 2. Two nodes are said to be simultaneous testers when both are connected

by a working link and have tokens in the same testing interval.

DEFINITION 3. Two tests are said to be simultaneous when two simultaneous testers

send test requests to each other before each receives a test request from the other.

It is important to note that simultaneous testers do not execute simultaneous tests if the

test request from one of them happens to reach the other before its test request is sent.

DEFINITION 4. A node is said to start up when it sends a round of test requests after
the recovery wait time. When simultaneous tests occur, another round of test requests may be
necessary, as will be shown below. After start-up, a node running DNR tests an adjacent link

once every two testing intervals.

LEMMA 1. After a node running DNR starts up and tests an adjacent link as unrespon-
sive, the node continues testing that link once each two testing intervals, as long as the link

remains unresponsive.

PROOF. According to the specification of the algorithm, once a node starts up or recovers
it creates a token and tests all its neighbors. After testing an adjacent link, the node releases
the corresponding token, and becomes the tested node in the next testing interval. If the link
to that neighbor remains unresponsive, the node does not receive a test request and a token is
not exchanged. The node then sets variable TokenTurn meaning that a token must be created
in the following testing interval. Thus, in the following testing interval a token is created and
the node tests the link and releases the token again. From this interval on the same pattern is
repeated, as long as the link remains unresponsive. Thus, the node keeps testing the link once

each two testing intervals. O
The following lemma shows the situations in which simultaneous testers may occur.

LEMMA 2. When a node starts up and an adjacent link is working, if the corresponding
neighbor is either starting up or is already working, these two nodes may become simultaneous
testers. Simultaneous testers may also occur if both nodes are working while their adjacent
unresponsive link recovers. Simultaneous testers also occur if two working nodes are connected

by a working link and the clock of one of them is twice faster than the clock of the other.

PROOF. According to the specification of the algorithm, after a node starts up it creates
a token and becomes a tester for that interval. If a neighbor is also starting-up, it also creates a

token, thus both become simultaneous testers for their adjacent link.

Now if a node starts up while a neighbor is already working, this working neighbor
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is testing the corresponding link once each two testing intervals, as stated by LEMMA 1. As
the initializing node creates a token the working neighbor may also be a tester in that testing

interval.

If both nodes connected by an unresponsive link are working, then both are testing that
link once each two testing intervals, as stated by LEMMA 1. As they are not exchanging their

tokens, both may be testers after their adjacent link recovers.

Finally, consider the case in which the clock of a working node is twice as fast as the
clock of a working neighbor, and they are connected by a working communication link. In this
case, as soon as the faster node sends a test request it restarts its testing interval, and becomes
the tested node. The new tester, i.e., the node that receives the test request, also restarts its
testing interval. Since the testing interval of this node is twice slower than the testing interval of
the other node, the faster node becomes a tested node and again a tester while the slower node

is still also a tester. Thus, periodically both nodes become simultaneous testers. [

THEOREM 1. When two nodes are simultaneous testers, only one of them keeps the

token for the next testing interval.

PROOF. First consider that both nodes are simultanous testers but before one node sends
a test request, it receives a test request, i.e. simultaneous tests do not occur. The node replies to

the test, and does not test the link in that interval.

Now consider that simultaneous tests occur. Accoding to the specification of the algo-
rithm, as a node executes a test, it sets variable TestRequestSent, meaning that, for that
link, a test request was sent. If two nodes execute simultaneous tests then each will have its
variable TestRequestSent set for the same link. As both nodes receive test requests, both
check that variable and realize that a simultaneous test has occurred, and only the node with the
smaller identifier replies, thus becoming the tested node. The other node does not reply to the
test, and behaves as the only tester in that testing interval. In the next testing interval only the

current tested node will have the token.

A notable situation occurs when two nodes connected by a working link are simultane-
ous testers and send test requests, but the test request of one of them arrives at the other when
that node is still in recovery wait time. Call the node that sent this test request node A and node
B the other node. According to DEFINITION 3, the tests are not simultaneos, once the test of
node A arrives at node B before that node sends its test request. Nevertheless, if the test request
sent by node B at the end of recovery wait time arrives at node A before that node times-out,
then, according to the algorithm specification, node A detects the occurrence of simultaneous

tests because that node has previously set variable TestRequestSent [j].

At this point, one of two situations may arise. If node A has the largest identifier, it
becomes the tester node and sets variable TestRequestReceived[j]. Because its test
request is dropped, node A times-out and sets variable Token [ j 1, in order to test again at the

next testing interval. In this case, node B does not receive a reply for its test request. As this

Abakés, Belo Horizonte, v. 1, n. 1, p. 05-27, nov/2012 — ISSN:2316-9451 19



Alternative specification and correctness proofs of the distributed network reachability algorithm

node did not receive a test request, it also does not detect simultaneity of tests. According to
the specification of the algorithm, it becomes the tested node for the next testing interval. Thus,

only one tester remains.

If, on the other hand, node A has the smallest identifier, it assumes the role of tested
node when detects simultaneity of tests. So, it sends a reply and gets the token, to be the next
tester. Thus, in each of the situations (the node that detected simultaneity of tests, i.e., node A,

becomes the tester or the tested node), only that node has the token for the next testing interval.

Thus, when two nodes are simultaneous testers, only one of them has the token for the

next testing interval. O

LEMMA 3. After a node starts up and tests an adjacent link as working, the node tests

that link once each two testing intervals as long as the link and the nodes remain working.

PROOF. A node that starts up tests an adjacent link as working either if the neighbor is
starting up or working and also the link is working. According to LEMMA 2, in these situations
both nodes may become simultaneous testers. Theorem 1 assures that only one node keeps the
token for the next testing interval, either if simultaneous testers execute simultaneous tests or
not. Furthermore, if the nodes are not simultaneous testers, the node that has just started up or

recovered sends a test request to the other successfully.

In both cases (nodes become simultaneous testers or not), the node that sends the test
request also releases the token. The node that receives the test request sends a test reply and
gets the token, becoming the tester for the next testing interval. From that interval on they keep
alternating their roles of tester and tested as long as both nodes and the link remain working.

Thus the node that has just started up tests that link once each two testing intervals. O

LEMMA 4. If a working node is adjacent to a link that becomes and remains unrespon-

sive, the node tests that link once each two testing intervals.

PROOF. A node running DNR either tests or is tested on a given link in a given interval.
If a link becomes unresponsive and the working node is the tested node in the next testing
interval it will not receive a test request in that interval. Thus, in the next testing interval the
node sets variable TokenTurn so that a token is created in the following interval. After the
corresponding test is executed, the node releases the token, thus becoming the tested node for
the following testing interval as in the initial situation, and this way successively. Now if the
node is the tester after the link becomes unresponsive, it releases the token as soon as it executes
the test. From that testing interval on, the same pattern as described above is repeated, for the
node becomes the tested node and the link remains unresponsive. Thus the node keeps testing

the link once each two testing intervals. O

LEMMA 5. If anode is working and a healing event occurs on an adjacent link, this node
keeps testing that link once each two testing intervals as long as the adjacent link and the nodes

remain working.
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PROOF. A healing event occurs either because a neighbor starts up or recovers, or a
link recovers while both adjacent nodes are working. According to LEMMA 2 when a healing
event occurs both nodes may become simultaneous testers, and simultaneous tests may occur.
Theorem 1 guarantees that only one node succeeds as the tester. If the nodes do not become
simultaneous testers, then either the node or the neighbor send a test request to the other node

sucessfully.

In both cases (nodes become simultaneous testers or not), the node that sends the test
request also releases the token. The node that receives the test request sends a test reply and
gets the token, becoming the tester for the next testing interval. From that interval on they keep
alternating their roles of tester and tested as long as both nodes and the link remain working.
Thus the node that was working and detected the healing event tests that link once each two

testing intervals. O

THEOREM 2. If the clock of a working node is more than twice as fast as the clock of
a working neighbor, and they are connected by a working communication link, then the only

tester of the link is the faster node, and it tests the link once every two testing intervals.

PROOF. As soon as the faster node tests the link, the neighbor replies and restarts its
testing interval. The neighbor is thus supposed to be the next tester. Nevertheless the testing
interval of the faster node expires twice before the time instant in which the neighbor is supposed

to execute a test. Thus the next test is again executed by the faster node.

In other words: after its testing interval expires for the first time, the faster node sets
variable TokenTurn. When the testing interval expires again, the faster node executes a test,
and this is before the neighbor’s testing interval has expired. After this new test is executed, the

other node restarts its testing interval again, and this way successively.
Thus, in this case, only the faster node tests the link every two testing intervals. O

THEOREM 3. If the clock of a working node is exactly twice as fast as the clock of
a working neighbor, and they are connected by a working communication link, then either
they alternate as tester and tested nodes or only one of them tests the link, depending on their

identifiers.

PROOF. According to LEMMA 2 in this case the two nodes periodically become simul-
taneous testers. If the faster node also has the greater identifier, each time simultaneous tests
occur, that node becomes the tester. Assuming that simultaneous tests always occur, then the
link is tested once every two testing intervals by the node with the greater identifier. Otherwise,
if the faster node has the smaller identifier, each time simultaneous tests occur, this node turns
out to be tested. In its next testing interval the faster node executes the test. Two testing intervals

after that, simultaneous tests occur again, and this way successively. O

THEOREM 4. A working node running DNR tests an adjacent link once every two test-

ing intervals, unless its clock is twice or more than twice slower than the clock of a working
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neighbor.

PROOF. If the clock of a working node is more than twice as fast as the clock of a
working neighbor, and they are connected by a working communication link, the faster node is
the only tester for that link, as stated by THEOREM 2. Thus, in this situation, the slower node
never tests the link. If the clock of a working node is exactly twice as fast as the clock of a
working neighbor, and they are connected by a working communication link, then either they
alternate as tester and tested nodes after the occurrence of simultaneous tests or only the faster
node tests the link, as stated by THEOREM 3.

On the other hand, if the clock speed of the node is less than twice slower than its
neighbor’s, then the node tests that adjacent link once every two testing intervals. This follows
from the set of lemmas above. If a node recovers and finds out an adjacent link is unresponsive,
LEMMA 1 proves that the node tests that link once every two testing intervals, as long as the
link remains unresponsive. If a node recovers and finds out an adjacent link is working, LEMMA
3 proves the node tests that link once every two testing intervals, as long as the link remains
working. If a node is working and an adjacent working link becomes unresponsive, the node
continues testing that link once every two testing intervals as shown by LEMMA 4. At last, if a
node is working and a healing event occurs at an unresponsive link, the node continues testing

that link once every two testing intervals as shown by LEMMA 5.

Thus as these are the only possible cases, a working node running DNR tests an adjacent
link once every two testing intervals, unless its clock is twice or more than twice slower than

the clock of a working neighbor. O

For all proofs below we assume that the speeds of the clocks of any two neighbors are

less than one the double of the other.

COROLLARY 1. If both nodes connected by a working link remain working for more
than one testing interval, then only one test is executed on that link per testing interval as long

as the nodes and the link remain working.

PROOF. This COROLLARY follows from THEOREM 4: as each working node running
DNR tests an adjacent link once every two testing intervals, if the link remains working, the
nodes must alternate their roles as tester and tested is successive intervals, so that only one test

is executed on the link per testing interval. O

COROLLARY 2. If a node is the only working node adjacent to an unresponsive link
for more than one testing interval, then only one test is executed on that link every two testing

intervals as long as the link remains unresponsive.

PROOF. This COROLLARY also follows from THEOREM 4: as each working node run-
ning DNR tests an adjacent link once every two testing intervals, if a link remains unresponsive
with only one adjacent working node, that node becomes the tester once each two testing inter-

vals. O
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Next we prove the worst-case event detection latency of the proposed testing strategy.
LEMMA 6. The unresponsiveness of a link is detected in at most two testing intervals.

PROOF. The unresponsiveness of a link is detected if at least one of its adjacent nodes
is starting up, recovering or working while the link is or becomes unresponsive. If a node is
starting up or recovering, the unresponsiveness of the link is detected as soon as it times out on

the reply expected after it sends test requests to all of its neighbors.

If a node is working while a link becomes unresponsive, that node may be either the
tester or the tested node in that testing interval. If it is the tester, it detects the unresponsiveness
in at most one testing interval, as soon as it tests the link. Otherwise, if the working node is the
tested node in that interval, that node will become the tester in the following interval, as stated

by LEMMA 4, so it detects the unresponsiveness of the link in at most two testing intervals. O

It should be noted that above we prove the worst-case latency: information about a new

event may be learned earlier, even from the dissemination algorithm.
LEMMA 7. A healing event is detected in at most two testing intervals.

PROOF. The healing of a link is detected by a working node if an adjacent node starts
up or recovers while the link is recovering or working, or if a neighbor is working, while the

unresponsive link to it recovers.

If a node starts up or recovers, it sends test requests to all of its neighbors. In this case,
if the adjacent link is recovering or working, due to the two-way tests, as soon as the working
neighbors reply, the state of the tester is detected as working as is working the state of the

communication link to it.

If both adjacent nodes were working while the link recovered, those nodes were not
alternating their roles as tester and tested nodes before the healing event. Thus, either the link
may have a tester for that testing interval or not, because both nodes may be tested nodes at that
interval. In this case the link will be tested only in the following testing interval, as stated by
LEMMA 4. Because of the rwo-way testing strategy, the tested node also learns about the healing
event. UJ

THEOREM 5. The event detection latency of DNR is two testing intervals in the worst-

case.

PROOF. First consider a node running DNR which is either starting up, recovering or
working. This node detects the unresponsiveness of a link either because an adjacent working
node and/or link fail. The detection latency of these cases is at most two testing intervals, as
stated by LEMMA 6.

The healing of a link is detected by a working node if an adjacent node starts up or
recovers and the adjacent link is working or if a link recovers while the adjacent node is starting

up, recovering or working. The detection latency of such events is also at most two testing
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intervals as stated by LEMMA 7.

As these are the only possible cases, the detection latency of DNR is at most two testing

intervals. O

4 DISSEMINATION PHASE PROOFS

This section proves both the latency of information dissemination after the detection of
an event and the correctness of the healing procedure. At first it is shown how the occurrence of
events during a dissemination may affect its latency. Later we prove that the exchange of link

state table information assures the correct dissemination of events in the case of a healing.

The latency of information dissemination in DNR is computed considering the time of
the initiation of a dissemination after the detection of an event. Upon the detection of a new
event on an adjacent link, a node running DNR starts the dissemination of new event information
employing a parallel strategy. So, as a dissemination is started, a message is sent trough all
adjacent links, and then it is forwarded by the working neighbors throughout the network in a

similar way.

Thus a dissemination may follow multiple paths, so call a message redundant when it
arrives at a node where it has already been disseminated. Let the dissemination path be the set
of links over which the message is subsequently forwarded which reaches each node at first,
1.e., before any redundant message. Call a [evel the set of nodes that are at the same number of

hops distant from the starting node in the dissemination path.

DEFINITION 5. A dissemination round is defined as the time interval in which all nodes

at one level of the dissemination path send their messages to all of the nodes in the next level.

Let the diameter of a connected component be the largest minimum distance between
any two nodes in that component. The latency of information dissemination in a component is
directly proportional to its diameter. It is important to notice that the diameter may change after

the occurrence of new events.

We say that an event alters the diameter of a connected component for a given dissemi-

nation when it occurs in a link or node of that component not yet reached by the dissemination.

In the case of an unresponsiveness event, if it is not yet detected by the time the dissem-
ination reaches it, it is detected by the dissemination itself. A healing event, on the other hand,
is detected only by the arriving of a test request. Nevertheless, a healed link is used when the

dissemination reaches it.

THEOREM 6. Consider that a dissemination is started upon the detection of an event and
proceeds in a connected component where other events may occur. Consider the succession

of those events that alter the diameter of the component for that dissemination. Let d be the
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diameter of the component after the last of such events occurs. It takes at most d dissemination

rounds from the beginning of the dissemination until it reaches all nodes in the final component.

PROOF. As disseminations are propagated with a parallel strategy, in a connected com-
ponent with diameter d the longest path has size at most d. So, according to the definition of
a dissemination round above, it takes at most d dissemination rounds for the message being

disseminated to reach all nodes in that component. O

We next prove the correctness of the healing procedure. We begin defining what a

healing message is.

The message sent by the tested node to the tester upon the detection of a healing event
is called a healing message. A healing message contains an extract of the LinkStateTable with

all links whose timestamps are greater than 1.

Call a healing procedure the task of sending a healing message by the tested node to
the tester and the subsequent sending of a dissemination message by the tested node for all its

neighbors.

THEOREM 7. The healing procedure assures that complete information about the con-

nected components previous to the healing arrive to the whole new component.

PROOF. The healing procedure is based on the assumption that the nodes that detected
the healing have updated information about all events occurred in their connected components
prior to the healing event. Indeed, if any of them does not have complete information about
those events, that is because there are events still being disseminated. Those events will reach
the healed link in the future and will be disseminated across it, thus arriving the whole new

component, as long as no new events occur.

As the timestamps of unreachable links were reset in local link state tables of the previ-
ous components, the healing message generated contain only information about links located in
the previous component of the sending node. According to the specification of the algorithm,
the dissemination message sent by the node that receives the healing message is generated after
updating the local LinkStateTable of that node and incrementing the timestamp of the healed
link. Thus, that dissemination messsage contains information about both components that ex-

isted previously to the healing, plus information about the healing event itself.

So, eventhough part of the information contained in the final dissemination message is
redundant in different portions of the network, it contains complete information about the new

connected component generated with the healing. O

As a concluding remark, the dissemination latency of healing messages is equal to the
dissemination latency proved in Theorem 6. In the case of the healing of a link that partitioned
the network, the final diameter after the healing event is the sum of the diameters of each
previous component. For a link that did not partition the network, its healing may decrease the

final diameter (think of a ring), but the latency remains equal to the diameter. The same result
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applies to the case of a recovering node, once the healing of a node is equivalent to the healing

of all its adjacent links.

S CONCLUSION

In this paper we gave alternative specification and set of proofs for the Distributed Net-
work Reachability algorithm which was originally presented in (DUARTE-JR; WEBER; FON-
SECA, 2012). The algorithm allows any node of a general topology network to compute which
portions of the network are reachable and unreachable. Links are tested continually, at a testing
interval, disseminating new information about events using a parallel strategy. The algorithm is
capable of diagnosing dynamic events and allows network partitions and subsequent healings.
At any time any working node may compute network reachability. We prove bounds on several

properties of the algorithm.

Future work includes exploring several applications of this algorithm, both for computer

networks as well as interconnection networks.
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