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Abstract  
The Amazon Rainforest is one of the main carbon sinks (CO2) on Earth. However, 
recently, owing to anthropogenic activities and climate change, it has lost its stability in 
CO2 absorption. Therefore, understanding the dynamics of future climate change 
scenarios is essential. We assessed the influence of future climate change scenarios on 
NPP (biomass) levels in the Amazon Forest using ML models. The tested models were 
Bayesian, linear, and random forest models. The current scenario was evaluated using 19 
bioclimatic covariates (WorldClim dataset). Future scenarios were based on RCPs 2.6 and 
8.5 (based on the MIROC5 and HadGEM2-ES models). Random Forest had the best 
performance statistics (R² = 0.71 in training and 0.68 in the holdout-test). These climate 
change scenarios imply an increase in the average NPP for the Amazon forest, especially 
with the greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and 
MIROC5 models, respectively). Forests (evergreen broadleaf forest areas) will have a 
greater carbon fixation capacity. In general, the Amazon forest will have an increased 
carbon fixation capacity by the end of the century. 
 
Keywords: Random Forest, Machine Learning, Carbon sink, Amazon Forest. 
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Resumo 
A Floresta Amazônica é um dos principais sumidouros de carbono (CO2) do planeta. No 
entanto, recentemente, devido a atividades antrópicas e mudanças climáticas, perdeu sua 
estabilidade na absorção de CO2. Portanto, entender a dinâmica dos cenários futuros das 
mudanças climáticas torna-se essencial. Avaliamos a influência de cenários futuros de 
mudanças climáticas nos níveis de NPP (biomassa) na Floresta Amazônica usando 
modelos de ML. Os modelos testados foram Bayesiano, Modelo Linear e Floresta 
Aleatória. O cenário atual foi avaliado usando 19 covariáveis bioclimáticas (conjunto de 
dados worldclim). Enquanto os cenários futuros foram baseados nos RCPs 2.6 e 8.5 
(baseados nos modelos dos modelos MIROC5 e HadGEM2-ES). A Floresta Aleatória teve 
o melhor desempenho estatístico (R² = 0,71 no treinamento e 0,68 no teste holdout). Os 
cenários de mudanças climáticas implicarão em aumento da NPP média para a floresta 
amazônica, especialmente com maior intensificação no RCP 2.6 (10 e 12 % para os 
modelos HadGEM2-ES e MIROC5, respectivamente). As florestas (áreas de florestas de 
folhas largas perenes) terão maior capacidade de fixação de carbono. Em geral, a floresta 
amazônica terá maior capacidade de fixação de carbono até o final do século. 
 
Palavras–chave: Floresta Aleatória, Aprendizagem de Máquina, Sumidouro de Carbono, 
Floresta Amazônica. 
 

 

1. INTRODUCTION 
 
Anthropogenic actions have threatened to raise (double) the emission levels of 

greenhouse gases on a global scale, especially CO2, thereby accelerating the implications 

of climate change (LINDNER et al., 2010). One alternative, outlined as a solution, is the 

maintenance of forests as natural carbon reservoirs because they occupy large areas of 

the world (~30–40%) and are responsible for the sequestration of 359 × 106 t of 

atmospheric carbon (ALLEN et al., 2010; HUI et al., 2017). In this context, the domains of 

tropical forests stand out because they represent approximately 25% of the forested areas 

on Earth and have a high potential for carbon fixation (15–25%) (POORTER et al., 2015; 

RAMMIG; LAPOLA, 2021). 

The Amazon rainforest is the most extensive tropical system on the planet, 

covering 3% of Earth's surface; it is one of the central biodiversity repositories with a high 

capacity to provide ecosystem services (HEINRICH et al., 2021). Among the ecosystem 

services, the absorption of CO2 is remarkable, storing approximately 10% of global forest 

carbon (120,000 Tg C) (AVITABILE et al., 2016; LAPOLA et al., 2018). Despite this, the 

Amazon rainforest has experienced several processes associated with the loss of natural 

vegetation due to systematic deforestation events (JUNIOR et al., 2021; SOARES-FILHO 

et al., 2006; ZEFERINO et al., 2021). According to the National Institute for Space 

Research (INPE), the Amazon lost 10,129 km² of its forested area in 2019, an increase of 

34% compared to the previous year. In 2020, deforestation rates in the Amazon rainforest 



Caderno de Geografia (2023) v.33, n.72 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2023v33n.72p.110 

112 

were 182% above that allowable by law (JUNIOR et al., 2021). Therefore, this situation 

inverts the function of the forest, i.e., it becomes a CO2 emitter rather than a sink 

(HEINRICH et al., 2021; SONG et al., 2015).  

In addition to the occurrence of deforestation over the last four decades, the 

Amazon forest has been affected by climate change. Recent studies have shown that 

climate change intensifies the dry season, creating stress on the ecosystem, especially in 

the eastern Amazon, a region with the highest rates of deforestation (GATTI et al., 2021). 

The consequence of this dynamic is a negative balance of CO2 absorption by the forest; in 

contrast, in future scenarios of CO2 increase, studies show that there is an effect from 

CO2 fertilization that contributes to biomass gain (LYRA et al., 2017). However, there are 

still uncertainties concerning this carbon fertilization capacity for long-term climate change 

mitigation, possibly due to the limiting effects of plant nutrients, such as nitrogen and 

phosphorus, which may inhibit increases in biomass increase (Wang et al., 2020).  

Biomass dynamic projections in climate change scenarios that contemplate the 

extensiveness of the Amazon and adjacent areas are at a global scale (coarse-scale: 0.5° 

resolution) (YU et al., 2019). Some of these studies are based on modeling (e.g., 

integrated models of land surface processes) (LYRA et al., 2017) and field measurement 

data (FLEISCHER et al., 2019). Therefore, studies must use more detailed scales focused 

on regional contexts, prioritizing data, and open-access software. From this perspective, 

two branches of scientific study have emerged as viable alternatives: remote sensing and 

machine learning. Studies have shown the efficiency of combining these methods (ZHANG 

et al., 2020), but there is still a gap in biomass predictions involving future scenarios and 

those at a regional scale in the Brazilian Amazon. 

The main advantage of remote sensing involves compensation for insufficient field 

data for some environmental variables, which are undoubtedly costly in regional contexts 

with difficult accessibility (e.g., the Legal Amazon) (PIAO et al., 2012; SUN; MU, 2018; YU 

et al., 2019). Among these products, MOD17A3HGF has been widely used (RUNNING; 

ZHAO, 2019) because it represents the Net Primary Productivity (NPP), which defines the 

levels of carbon fixed by vegetation during photosynthesis (POTTER; KLOOSTER; 

GENOVESE, 2012). 

For machine learning (ML), environmental prediction studies focus on a 

methodological framework that combines open-access algorithms from well-developed 

branches of statistics and a dataset of auxiliary covariates for prediction. ML is essential in 

climate change studies because the dynamics of most environmental variables of this 
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nature involve nonlinear relationships that require robust algorithms for explanations 

(KESKIN; GRUNWALD; HARRIS, 2019). Furthermore, the ML methodology supports the 

insertion of covariates; for climate change studies, covariates from Global Climate Models 

(GCMs) are freely available. GCMs are climate projections formulated by the 

Intergovernmental Panel on Climate Change (IPCC) (VAN VUUREN et al., 2011). 

Therefore, these scenarios consider the influence of human action on climate change 

(VAN VUUREN et al., 2011). These scenarios are known as Representative Concentration 

Routes (RCP), which vary according to the intensity of the radioactive forces (RCPs 2.6, 

4.5, 6, and 8.5). 

Several studies have used RCPs to measure the effects of climate change on 

vegetation biomass levels and, consequently, on the capacity to absorb atmospheric 

carbon. Yao, Piao and Wang (2018) analyzed forest areas in China using different phases 

of the Coupled Model Intercomparison Project (CMIP5) scenarios. They found that climate 

change will (slightly) increase carbon sequestration by 0.52–0.60 Pg C by 2040. In 

contrast, Sung et al., (2016) used RCPs for forests in South Korea. They estimated that if 

these ecosystems are not properly managed, the NPP will decrease by 90%. If such 

changes occur, there will be a 50% increase in their capacity to sequester carbon. 

Considering CO2 levels between 421 and 936 ppm and temperature rise ranging from 1.1 

to 2.6 °C, Berberoglu, Donmez, and Cilek (2021) projected a substantial rise in the NPP in 

Turkey. Overall, the use of RCPs has intrinsically helped in understanding the impacts of 

climate change scenarios on vegetation productivity in different parts of the world.  

Therefore, the objective of this study was to evaluate the influence of future 

climate change scenarios on NPP (biomass) levels in the Amazon Forest using ML 

models. To this end, i) machine learning models were evaluated to explain the spatial NPP 

distribution in the AML in future scenarios using covariates from the RCPs; ii) based on 

this modeling, the covariates with the highest level of importance for the NPP dynamics 

were ranked; and iii) the NPP in future scenarios was extracted and analyzed at the 

vegetation domain level. 

 
2. MATERIAL AND METHODS 

2.1. STUDY AREA 

 
The study area consisted of the Legal Amazon (LA) do Brasil political unit (Fig. 1), 

covering 59% of the Brazilian territory (5 × 106 km2). The LA involves nine states of the 

federation, has a population of 27.5 million inhabitants, and has a low population density. 
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Figure 1 - a) Climate types according to Köppen classification. b) land use and land cover classes in the 

Amazon.  

 

The LA has three climatic domains, with the most significant territorial 

expressiveness framed by the Köppen classification (Fig. 1a). The Tropical monsoon 

climatic type (Am) occupies 43% of the LA and occurs mainly in the central part of the 

SW–NE extension. It is characterized by two seasons: one is typically hot and rainy while 

the other is milder and drier. The typical tropical rainforest climate (Af) occupies 38% of the 

area, dominates the SW area of the LA, and does not have a dry season, with precipitation 

during the driest month of at least 60 mm. In the SE extension, the dominant climate type 

is tropical wet-dry (Aw), occupying 19% of the LA. The Aw climate is markedly seasonal, 

with rainfall above 250 mm per month in the austral summer and a dry winter. 

For vegetation, the Amazon has diversified mosaics of land use and cover, such as 

closed shrublands, croplands, cropland natural vegetation mosaics, deciduous broadleaf 

forests, evergreen broadleaf forests, grasslands, mixed forests, open shrublands, 

savannas, and woody savannas (SULLA-MENASHE; FRIEDL, 2019) (Fig. 1b). This varied 

mosaic gives the Amazon a unique importance in a regional and global context regarding 

ecosystem services. For example, forest composition plays a fundamental role in 

distributing moisture (rainfall inputs) to the midwestern portion of Brazil, a critical region for 

the Brazilian agribusiness sector, mainly due to large-scale global grain exports. The 

Amazon also has a rich biodiversity of fauna and flora (BULLOCK; WOODCOCK, 2021). 
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In addition, forests are one of the leading CO2 inhibitors globally (BULLOCK; 

WOODCOCK, 2021), mainly based on their carbon fixation capacity (through the NPP).   

 
2.2. METHODOLOGICAL STRUCTURE 
 

We constructed the following methodological structure: i) obtained the annual NPP 

and calculated the average for the current scenario, ii) selected predictor covariates to 

explain the NPP in future scenarios, iii) removed covariates with high correlation, iv) 

trained and validated the machine learning models, and v) spatial prediction (Fig. 2). 

 

 
Figure 2 - Flowchart of the methodological structure to obtain NPP spatial predictions in current and future 
scenarios (RCP 2.6 and 8.5 by models MIROC5 and the HadGEM2-ES) from the Bayesian, Linear Model 
and Random Forest Machine Learning models. NPP: Net Primary Productivity; R²: R-Squared; RMSE: root 
mean squared error; MAE: mean absolute error.  
 

 

2.3. DATABASE FOR THE DEPENDENT VARIABLE 

 
The dependent variable in the analysis was the NPP, which indicates the capacity 

of vegetation to fix carbon through the photosynthetic process (YU et al., 2019). The NPP 

was obtained from the Terra Moderate-Resolution Imaging Spectroradiometer (MODIS), 

specifically MOD17A3HGF version 6 (RUNNING; ZHAO, 2019). This product has a spatial 

resolution of 500 m, but we resampled it to 1 × 1 km using the bilinear interpolation 

method to obtain equivalence with the predictive covariates of the modeling. The time 

range of the NPP data included the entire MODIS orbital monitoring period (21 years: 

2000–2020). Subsequently, we built a randomly distributed grid of points with a minimum 



Caderno de Geografia (2023) v.33, n.72 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2023v33n.72p.110 

116 

distance of 1 km for the entire area of the LA, extracting the average value for the NPP per 

point. 

 
2.4. COVARIATE DATABASE 

 
We established a database of covariates to support NPP prediction in the study 

area for the current and future scenarios. The covariates were derived from WordClim 

Data and included 19 rasters with a 1 × 1 km resolution covering the globe with various 

weather information (HIJMANS et al., 2005). WorldClim is a verified data source that 

provides readily available information on current and future scenarios. Therefore, we 

divided the analysis into two parts: i) NPP prediction for the current scenario (1960–1990) 

and ii) future climate change scenarios (2061–2080).  

In the current scenario, the covariates were derived from meteorological stations 

distributed around the globe, including thermal and rainfall aspects (Table 1). For future 

climate change scenarios, we used a set of covariates with the same nomenclature as the 

variables used in the current scenario; however, they were derived from two greenhouse 

gas emissions from the Coupled Model Intercomparison Project 5 (CMIP5) (HIJMANS et 

al., 2005).  

These new scenarios are known as representative concentration pathways (RCPs); 

therefore, we selected two RCP scenarios (RCPs 2.6 and 8.5) to assess the NPP. RCP 

2.6 is the most optimistic scenario considering climate change: by the mid-21st century 

radioactive forcings are projected to increase by up to 3.1 W m–², with a rapid decline to 

2.6 W m–² by the end of the century (VAN VUUREN et al., 2011). In contrast, RCP 8.5 is 

the most pessimistic, where radioactive forcing will reach 8.5 W m–² by the end of the 21st 

century (RIAHI et al., 2011). These scenarios were selected because they represent 

extreme contexts. We considered two GCMs, MIROC5 and HadGEM2-ES, which are both 

widely used in South America (CAVALCANTI; SHIMIZU, 2012; DERECZYNSKI et al., 

2020).   
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Table 1 - Covariates used for training the Machine Learning models and NPP spatial prediction in the Legal 
Amazon in current (1969) and future (2061 - 2080) scenarios. 

Abbreviation 
Covariates of current and future 

scenarios 
Abbreviation 

Covariates of current and future 
scenarios 

Bioc 01 Mean annual temperature Bioc 11 
Mean temperature of coldest 
quarter 

Bioc 02 Mean diurnal range Bioc 12 Annual precipitation 
Bioc 03 Isothermality Bioc 13 Precipitation of wettest month 
Bioc 04 Temperature seasonality Bioc 14 Precipitation of driest month 

Bioc 05 
Maximum temperature of warmest 
month 

Bioc 15 Precipitation seasonality 

Bioc 06 
Minimum temperature of coldest 
month 

Bioc 16 Precipitation of wettest quarter 

Bioc 07 Temperature annual range Bioc 17 Precipitation of driest quarter 

Bioc 08 
Mean temperature of wettest 
quarter 

Bioc 18 Precipitation of warmest quarter 

Bioc 09 Mean temperature of driest quarter Bioc 19 Precipitation of coldest quarter 

Bioc 10 
Mean temperature of warmest 
quarter 

  

 

2.5. NPP SPATIAL MODELING 

 
In the prediction step using the algorithms, we used the grid points with the NPP 

value and sequentially extracted the values of the covariates in the scenarios (Current, 

RCP 2.6, and RCP 8.5). After extraction, we obtained a regression matrix to train the 

machine learning models using the R software (TEAM, 2018).  

As the covariates used were from the same data source (WorldClim), redundancy 

between the variables was expected, increasing the uncertainty of the predictions.  

Therefore, we applied the FindCorrelation function (Caret package) (KUHN et al., 2017) to 

discard covariates with a high correlation using Pearson > 0.95. This process ensures the 

fluidity of the model and the principle of parsimony while avoiding overestimated 

projections (SOUZA et al., 2018).  

Subsequently, we randomly divided the database: 80% of the samples for training 

and 20% for the holdout-test. For the training process (80% of the data), we used three ML 

models: Random Forest (RF), linear regression model (LM), and Bayesian regularized 

neural network (BRNN). The RF is an ensemble model in which a set of random trees is 

built so that the training process occurs and the subsequent prediction of the dependent 

variable is based on the covariates (BREIMAN, 2002). The final prediction was based on 

the average of all constructed trees. This model, as well as most MLs, understands non-

linear relationships in space and time. Unlike RF, LM analyzes the linear relationships 

between the dependent variable (in this case NPP) and predictor covariates (DOTTO et 

al., 2018). Thus, the linear patterns imposed by the covariates have a greater explanation 

for the variation in the NPP in view of the spatial predictions. The BRNN has been widely 
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used for spatial prediction analyses, especially considering its ability to prevent overfitting 

(GARG; MISHRA, 2018). This model was developed from probabilistic interpretations of 

networks; therefore, BRNN is a linear combination of ANN and Bayesian methods to 

define/determine the regularization of parameters (GARG; MISHRA, 2018). All models are 

available through the Caret package.  

The adjustment, training, and validation (Cross-Validation) of the models were 

performed from the ―trainControl‖ function in the Caret package. Cross-validation provides 

statistical indices for training evaluations, such as R², RMSE, and MAE (Eqs. (1), (2), and 

(3), respectively). The remaining 20% of the samples were used to calculate the overall 

performance of the models, as these data were not observed in the training process, but 

as an external validation (holdout-test). Comparing the statistical indices obtained in the 

Cross-Validation and Holdout-test is crucial for assessing overfitting in the predictions 

(GOMES et al., 2019). 
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where xobs represents the observed values for the NPP and xmod are the values 

predicted by the models. Training was carried out only with the covariates of the current 

scenario, whereas the spatial predictions were carried out with datasets that represent 

climate change in future scenarios in the MIROC5 and HadGEM2-ES models. 

 
 

2.6.  EXTRACTION OF NPP VALUES FOR CURRENT AND FUTURE SCENARIOS   
DOMAINS OF USE AND LAND COVER IN AMAZON RAINFOREST 

 

After training and the holdout test, we obtained the best model to perform spatial 

predictions based on the statistical indices (> R², < RMSE, and < MAE). We extracted the 

average values of Land Use and Coverage for the Amazon rainforest region using spatial 

predictions. 

We use the 2019 (most recent) MCD12Q1 (SULLA-MENASHE; FRIEDL, 2019) 

product to represent Land Use and Coverage (LUC). For the Amazon rainforest, the 

MCD12Q1 originally had 12 classes; however, we removed categories (e.g., urban area, 
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barren, and water bodies) because they have inconsistent NPP values. The final mapping 

presented 11 classes: closed shrublands, croplands, cropland natural vegetation mosaics, 

deciduous broadleaf forests, evergreen broadleaf forests, grasslands, mixed forests, open 

shrublands, savannas, and woody savannas (Fig. 1b). 

 

3. RESULTS 

3.1. PERFORMANCE OF NPP PREDICTION MODELS 

 
The methodological framework developed to predict NPP prioritized the fluidity of 

the modeling; five covariates (Bioc1, Bioc7, Bioc9, Bioc16, and Bioc17) with high 

correlations identified by the FindCorrelation function were removed from the database 

with 19 covariates. In the performance evaluation of the tested ML models, statistical 

indices (R², RMSE, and MAE) were provided during the training and holdout-test 

processes. Among the tested models, RF was the most efficient at predicting the NPP. 

Therefore, in the training phase, the RF showed high R² (0.71) and low error levels (RMSE 

= 0.16 and MAE = 0.08 Kg C/m²) with respect to the other models (Fig. 4). In the holdout-

test, the metrics were similar to the training, indicating low overfitting in the modeling, with 

an R² of 0.68 and low RMSE and MAE (Table 2). 

During the training process, the RF selected the covariates that best explained the 

spatial distribution of the NPP in the LA. The covariates were ranked according to the 

degree of importance (%overall); Bioc 19, Bioc 04, and Bioc 14 were ranked with the 

highest level of importance (Fig. 4). 

 

 

Figure 3 - Machine Learning model performance in the training phase (Bayesian, Linear Model, and 

Random Forest). a) R-squared (R²), b) mean error absolute (MAE), and c) root-mean-square error (RMSE). 
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Table 2. Training and holdout-test for the tested models (Bayesian, Linear Model, and Random Forest). R²: 
R-Squared; MAE: mean absolute error; and RMSE: root-mean-square error. 

 

 

Training 
 

 Holdout-test  

Models 
R² MAE RMSE R² MAE RMSE 

Bayesian 
0.59 0.12 0.19 0.47 0.14 0.20 

Linear 

Model 
0.51 0.14 0.20 0.56 0.12 0.19 

Random 

Forest 
0.71 0.08 0.16 0.68 0.08 0.16 

 

 

 

Figure 4 - Ranking of the most important covariates selected by the Random Forest model to explain the 
spatial distribution of NPP. y-axis degree of importance of covariates (Worldclim dataset) and x-axis: 
predictor covariates. 
 

3.2. NPP SPATIAL DISTRIBUTION FOR CURRENT AND FUTURE SCENARIOS 

 

From the prediction made by RF, the mean NPP will increase slightly in future 

scenarios (RCP 2.6 and 8.5) in the Global Climate Model used (ie HadGEM2-ES and 

MIROC5) (Figure 5). Furthermore, in RCP 2.6, the increase in mean NPP is more 

significant (10 and 12% for the HadGEM2-ES and MIROC5 models, respectively), while in 

RCP 8.5, the intensity is relatively low (6 and 10%). 

The spatial distribution pattern of the NPP was similar between the HadGEM2-ES 

and MIROC5 models in RCPs 2.6 and 8.5 (Fig. 5). In general, there will be an expansion 

of carbon fixation cores in the western portion (> 1.50 Kg C/m²). In contrast, there will be 

an intensification of carbon emissions source cores in the southern areas of the LA (< 0.71 
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Kg C/m²); part of this region covers an area with a higher rate of deforestation 

(deforestation arc). 

 

 

Figure 5 - Net Primary Productivity (NPP) Spatial Distribution for the Amazon Forest in Current and Future 
Scenarios. a) Current; b) RCP 2.6 MIROC5; c) RCP 8.5 MIROC5; d) RCP 2.6 HadGEM2-ES; e) RCP 8.5 
MIROC5. 

 

The behavior of the NPP during LUC showed variability with the climate change 

scenarios (RCPs 2.6 and 8.5) (Fig. 6). Considering the average NPP values, we highlight 

a substantial increase in carbon fixation for evergreen broadleaf forest areas because they 

comprise most of the Amazon rainforest (~65%). For mixed forests, closed shrublands, 

and woody savanna classes, a decrease in NPP is expected. In the other LUC, we found 

that the NPP levels remained stable. 

 

 

Figure 6 - Average NPP (Net Primary Productivity) for LUC (Land Use Cover) in the current scenarios and 

RCPs 2.6 and 8.5 for HadGEM2-ES and MIROC5 models. 
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4. DISCUSSION 

4.1. MODELING PERFORMANCE 

 

The RF was the ML with the best performance in explaining the levels of carbon 

fixation (NPP) in the LA (> R² and < RMSE and MAE). The RF model had the greatest 

capacity to represent nonlinear relationships between the NPP and climatic covariates. RF 

is widely known for its randomness characteristics and statistical robustness (ROY; 

LAROCQUE, 2012). It stands out owing to its use of the bootstrap technique (bagging), in 

which the original training database is resampled, thus creating a new set of random 

samples (LEE; ULLAH; WANG, 2020; TYRALIS; PAPACHARALAMPOUS; LANGOUSIS, 

2019). This new dataset builds uncorrelated trees, thereby decreasing model variance 

(FERREIRA et al., 2021).  

In addition to the bootstrap, we emphasize that RF is an ensemble model, where 

the final prediction (in regression) is provided by the average of all of the decision trees 

(aggregation step), which reduces spatial prediction errors and susceptibility to overfitting 

(LIN et al., 2017). This corroborates the observed results, where the R² of the training was 

similar to that of the test (Fig. 5 and Table 2). 

 

4.2. INFLUENCE OF CLIMATE CHANGE SCENARIOS ON CARBON FIXATION (BY 

NPP) IN THE BRAZILIAN LEGAL AMAZON 

 

We evaluated the influence of climate change scenarios (RCPs 2.6 and 8.5) on 

carbon fixation (through NPP) in the Legal Brazilian Amazon using Machine Learning 

models. The main findings of the study were as follows: (i) there will be an increase in the 

NPP in the Amazon rainforest based on the RCPs examined and ii) at the LUC level, 

areas of evergreen broadleaf forest areas will fix larger portions of carbon in future 

scenarios while classes of mixed forests, closed shrublands, and woody savannas will 

present lower NPP levels. 

The increase in the NPP in the Amazon region due to climate change agrees with 

other studies conducted in other regions and at a global scale (GANG et al., 2017; 

MICHALETZ et al., 2014; SUN; MU, 2018). Variations in NPP in different parts of the globe 

have mainly been associated with climate change, especially fluctuations in temperature 

and precipitation (water availability) (MICHALETZ et al., 2014). As the covariates included 

in the modeling of this study were derived from temperature and precipitation, they 
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certainly helped explain the NPP patterns, e.g., the most important covariate in the NPP 

distribution (Bioc 19: Precipitation of the Coldest Quarter) (Fig. 5).  

The GCMs (i.e., HadGEM2-ES and MIROC5) used in this study project an increase 

in rainfall inputs in the climate change scenarios (RCPs 2.6 and 8.5) for the LA (HIJMANS 

et al., 2005). Therefore, the water availability in future scenarios will firmly control the 

dynamics of carbon fixation in the LA: precipitation favors the photosynthetic activity of 

vegetation (GANG et al., 2017). Consistent with our study, Azhdari et al. (2020) evaluated 

the impacts of climate change (RCP 4.5) on NPP in southern Iran using the HadGEM2-ES 

model. They found that the increase in carbon fixation levels was a function of increased 

precipitation. Similarly, in North American regions, Duveneck and Thompson (2017) used 

the CCSM4, CESM1, HADGE, and MPIMLR models under RCP 8.5, concluding that the 

increase in NPP is associated with high rainfall inputs.  

Although climatic variables appear to be the main drivers of NPP in the Amazon 

rainforest (especially precipitation), atmospheric CO2 is also largely responsible for its 

fluctuations (MICHALETZ et al., 2014). In addition to the projected climate dynamics 

arising from the RCPs, these scenarios were formulated based on the CO2 levels 

(SCHWALM; GLENDON; DUFFY, 2020). Vegetation tissues are built from the absorption 

of CO2 (JIANG et al., 2019), subsequently favoring phenological development and leading 

to high levels of NPP (PIAO et al., 2012). Thus, there is a fertilization process in which 

CO2 is essential for plant growth on Earth's surface. Yu et al. (2019) projected the global 

impacts of climate change on the NPP using RCPs 2.6, 4.5, and 8.5. They found that as 

the concentration of CO2 increased, there was an increase in the NPP. For global scales 

using the Special Report on Emission Scenarios (SRES), Pan et al., (2014) also noted that 

the effects of CO2 fertilization will result in a 12–13.9% increase in the NPP by the end of 

the 21st century. Sun and Mu (2018) used 10 model GCMs with RCP 4.5, observing that 

climatic variables and CO2 fertilization were the main factors for the increase in the NPP. 

Climatic dynamics and CO2 concentration influence aspects at the surface level, 

such as LUC. Therefore, forests (evergreen broadleaf forest areas) have a favorable 

structure for carbon fixation, especially considering the high rates of water loss by 

evapotranspiration, which is proportional to carbon assimilation through the stomata (LIU; 

WU; WANG, 2017; MCCAUGHEY et al., 2006). Similar to our findings, other studies have 

also found higher levels of carbon fixation in forested areas (AZHDARI et al., 2020; GANG 

et al., 2017). Although the increase in the NPP presents a gain in carbon assimilation 

rates, some aspects in the ecosystem context should be observed. For example, carbon 
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fixation tends to boost the phenological development of vegetation, which responds rapidly 

to the loss rates of water by evapotranspiration. Studies have shown that this can affect 

watershed runoff (reducing), subsequently decreasing water production (TIAN et al., 

2016). In contrast, there is a trade-off: even decreasing water flows can contain the effects 

of soil erosion, as well as hydro-sedimentological flows (B  B  OĞLU et al., 2019). 

Other theoretical evidence has shown that although an increase in the NPP occurs in 

forest areas under the effects of climate change, this may have ecosystem implications. By 

changing overall biodiversity patterns, an increase in NPP can deliberate the transition of 

species, such as pastures or savannas (low-density phytophysiognomies biomass), in 

forests (GRAHAM et al., 2016). This does not negate the importance of carbon 

sequestration through forests; however, caution is required. Overall, we should not 

indicate erroneous points that can lead to conflicts of interest among different groups. 

Another issue requiring analysis in the LA is the context of human activities, 

especially those regarding the systematic conversion of land use and coverage, 

particularly in terms of pastures and agricultural land (BARONA et al., 2010; MANN et al., 

2014). Although high levels of carbon fixation are projected in future scenarios for forest 

areas, if the pace of anthropic action is maintained, these projections could be affected, 

compromising climate change mitigation on a planetary scale. Our results indicate that the 

lowest NPP levels in future scenarios are intended for LUCs belonging to the deforestation 

arc, i.e., the region responsible for considerable deforestation in the LA (ALDRICH et al., 

2012).  

Considering previous advances in anthropic use in the LA, several studies have 

analyzed the projections of changes for LUC in this region (SOARES-FILHO et al., 2006; 

ZEFERINO et al., 2021). These studies indicate advances in the loss of forests due to 

deforestation. Deforestation rates can lead to a decrease in precipitation on the order of 

10–20% in this region (MOORE et al., 2007), enhancing drought and fire (FARIA et al., 

2017). This is crucial for carbon fixation dynamics, mainly because it reduces the 

photosynthetic activity of forests, reducing the potential for carbon absorption and 

intensifying emissions (ARAGÃO et al., 2018). Therefore, if these scenarios occur, the 

intensification of carbon emissions sources will extend across the region.  

In addition to deforestation, the inclusion of land-use classes with low NPP levels 

can boost CO2 emissions. However, the characteristics of low NPP levels in these classes 

are possibly associated with the deforestation arc: they present zones with high 

temperatures and low levels of precipitation (in the current and future scenarios) 
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(HIJMANS et al., 2005). This tends to imply low levels of soil water availability (low levels), 

thus altering the vegetation's ability to maintain its metabolic activities. This subsequently 

decreases plant respiration rates and carbon fixation levels (REICHSTEIN et al., 2002; 

VAN DER MOLEN et al., 2011), thereby becoming source emitters of CO2. In addition to 

carbon emissions, in terms of implications, classes with low NPP levels can lead to low 

evapotranspiration rates, resulting in lower levels of moisture transfer to the upper layers 

of the atmosphere. This harms the distribution of moisture in Brazil, especially in the 

Midwest, i.e., the center of agricultural production, which can generate serious economic 

impacts. The inclusion of classes with lower NPP levels can also affect the dynamics of 

energy fluxes, increasing the surface temperature (CHAGAS et al., 2019) and boosting 

sensible heat fluxes, which results in air drying.  

In summary, the increase in the NPP in future scenarios for forests is highly positive 

for ecosystem maintenance in the LA and is crucial for plans to mitigate the impacts of 

climate change. However, projected advances in deforestation could jeopardize their 

potential as a carbon sink. Based on our findings, we suggest inserting NPP spatial 

dynamic projections into the mitigation plans. 

 

5. CONCLUSION 

 

Among the machine learning models tested to assess the influence of climate 

change on Net Primary Productivity (NPP) in the Brazilian LA, RF had the best 

performance (R² = 0.71 for training and R² = 0.68 for the holdout test). 

Climate change will imply an increase in the average NPP for the LA, especially 

with a greater intensification in RCP 2.6 (10 and 12 % for the HadGEM2-ES and MIROC5 

models, respectively). Considering the implications of climate change on the NPP levels 

for LUC, we found that forests (evergreen broadleaf forest areas) will have the greatest 

potential for carbon sequestration in RCPs 2.6 and 8.5. We emphasize that information on 

the future impacts of climate change in the NPP of the Brazilian LA is crucial for decision-

making and mitigation plans for future scenarios, especially considering the global 

importance of the LA in the dynamics of carbon sequestration. 
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