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Resumo 
O regime de precipitação na bacia hidrográfica do Xingu é um aspecto importante do clima 
regional e tem implicações significativas para o ciclo hidrológico e a dinâmica dos 
ecossistemas no Bioma Amazônia. Neste artigo, apresentamos uma análise espacial e 
temporal da precipitação inter-sazonal. Um total de 22 estações foram selecionadas após 
uma verificação de consistência. Entre as análises de validação dos dados do CHIRPS com 
as estações pluviométricas, cerca de 52,3% apreciaram um bom desempenho do R² (>0,7) 
e uma superestimação dos menores erros durante a estação seca. Durante o período 
chuvoso houve redução no desempenho do R² (<0,7) em cerca de 71,4% das estações e 
com maiores erros superestimados em relação ao período seco. O CHIRPS subestima para 
a estação seca e superestima para a estação chuvosa. Para o período chuvoso, a tendência 
máxima de precipitação encontrada foi de 0,3 mm.mês-1, e a tendência mínima de 
precipitação encontrada foi de -0,1 mm.mês-1. Para o período seco, a tendência máxima 
de precipitação encontrada foi de 0,08 mm.mês-1, e a tendência mínima de precipitação 
encontrada foi de -0,02 mm.mês-1. Este estudo destaca a importância do sensoriamento 
remoto para o monitoramento da precipitação em áreas com dados limitados de 
pluviômetros e fornece informações valiosas para a tomada de decisões na gestão 
sustentável dos recursos hídricos na bacia hidrográfica do Xingu, Amazônia. 
 
Palavras–chave: Mudanças climáticas; Desmatamento; Computação em Nuvem; 
Inclinação de Sen; Tendências 
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Abstract  
The precipitation regimen in the Xingu watershed is an important aspect of the regional 
climate and has significant implications for the hydrological cycle and ecosystem dynamics 
in the Amazon Biome. This paper presents a spatial and temporal analysis of inter-seasonal 
precipitation. A total of 22 stations were selected after a consistency check. Among the 
validation analyses of the CHIRPS data with the rain gauge stations, about 52.3% 
appreciated a good R² performance (>0.7) and an overestimation of the lowest errors during 
the dry season. During the rainy season, there was a reduction in the R² performance (<0.7) 
in about 71.4% of the stations and with higher overestimated errors concerning the dry 
season. CHIRPS underestimate for the dry season and overestimate for the rainy season. 
For the rainy season, the maximum trend for precipitation found was 0.3 mm.month-1, and 
the minimum trend for precipitation found was -0.1 mm.month-1. For the dry season, the 
maximum trend for precipitation found was 0.08 mm.month-1, and the minimum trend for 
precipitation found was -0.02 mm.month-1. This study highlights the importance of remote 
sensing for precipitation monitoring in areas with limited rain gauge data. It provides valuable 
information for sustainable water resources management decision-making in the Xingu 
watershed, Amazon. 
 
Keywords: Climate change, Deforestation, Cloud Computing, Sen’s Slope, Trends. 
 

 

1. INTRODUÇÃO 
 
The Amazon rainforest ranks among the world’s largest and most biodiverse 

ecosystems with dynamic and complex climate patterns. Rainfall plays a vital role in 

sustaining the rainforest’s water cycle, which, in turn, supports its rich biodiversity. However, 

climate change has disrupted precipitation patterns and led to extreme weather events, 

posing significant risks to the ecosystems and inhabitants of the Amazon (Gatti et al., 2018; 

Malhi et al., 2018; de Medeiros; de Oliveira; Avila-Diaz, 2022).  

The Xingu Basin in the Amazon region faces numerous environmental challenges 

that significantly impact its biodiversity and water systems. Deforestation, mining, and 

agriculture are major drivers of this degradation, leading to soil erosion, loss of vegetation, 

and water pollution. Climate change exacerbates these threats by causing variations in 

precipitation patterns, resulting in altered rainfall and more frequent extreme weather events 

such as severe droughts and floods. These climatic changes amplify the effects of 

deforestation, as reduced vegetation cover decreases the soil’s water retention capacity, 

making the region more vulnerable to droughts and other climatic extremes. Furthermore, 

changes in precipitation can impact the basin’s water resources, which are essential for local 

communities and ecosystems. The Xingu River, a significant Amazon tributary, supplies 

water to many indigenous communities and supports diverse aquatic life. Shifts in rainfall 

patterns can affect the river’s flow and water quality, thus impacting the region’s inhabitants 

and ecosystems (Fearnside, 2019; Siqueira et al., 2021; Lucas et al., 2021). 
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Monitoring extreme precipitation is crucial for the Xingu watershed and the Amazon 

region. However, the current network of rain gauges in the Xingu watershed, a vital area for 

biodiversity, is sparse and unevenly distributed. To address the limited rainfall data, remotely 

sensed precipitation products are essential. These remote sensing tools provide several 

benefits over traditional rain gauges, such as wider spatial coverage, higher temporal 

resolution, and cost-effectiveness. Several remote sensing options are available for 

estimating precipitation, including the Tropical Rainfall Measuring Mission (TRMM), Global 

Precipitation Measurement (GPM), and Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS) (Funk et al., 2015). CHIRPS, in particular, is extensively used for 

monitoring precipitation and conducting climate studies due to its high accuracy, long-term 

data availability, and daily temporal resolution (Lucas et al., 2021; de Medeiros; de Oliveira; 

Avila-Diaz, 2022). 

In climate studies, statistical methods like the Mann-Kendall test and Sen’s slope 

estimator extensively analyse precipitation trends in the Amazon region and globally (Zhang 

et al., 2020; Zhang et al., 2021). The spatial representation of Sen’s slope is particularly 

valuable for water resources management, offering detailed insights into precipitation trends 

across specific areas (Alfieri et al., 2021). These tools are crucial for quantifying and 

assessing trends in precipitation, enabling researchers to detect both increasing and 

decreasing trends. This information is vital for climate studies, water resource management, 

and ecosystem monitoring (Medina et al., 2023). Applying the Mann-Kendall test and Sen’s 

slope estimator underscores their significance in understanding climate dynamics and 

supporting decision-making processes related to environmental management. 

This work innovates by calculating the magnitude trend of change in precipitation 

using Google Earth Engine processing power, harvesting the potential of the free-of-cost 

and petabytes of data cloud computing platform. This paper presents a spatial and temporal 

analysis of precipitation patterns in the Xingu watershed using remotely sensed data from 

CHIRPS. We apply statistical methods to evaluate trends in precipitation patterns and 

spatialise the Sen’s slope to provide insights into water resources management in the 

region. Our study highlights the importance of remote sensing for precipitation monitoring in 

areas with limited rainfall data. It provides valuable information for decision-making in water 

resources management in the Xingu watershed. 
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2. MATERIAL AND METHODS 
 
2.1. Study Area 

The Xingu watershed is a significant river basin in Brazil, covering a vast area in the 

Amazon rainforest. Diverse ecosystems, including forests, savannas, and wetlands, 

characterise it. This response will provide an overview of the Xingu watershed, its area, and 

its main economic activities based on available scientific literature. The watershed 

encompasses an area of approximately 521,000 square kilometres (km²) and is situated in 

the eastern part of the Amazon Basin (Fearnside, 2001). This region is known for its high 

biodiversity, hosting numerous plant and animal species found nowhere else on Earth 

(Fonseca et al., 2019). The Xingu River, which runs through the watershed, is a major 

tributary of the Amazon River, contributing significant freshwater input to the Amazon Basin. 

The Xingu watershed’s main economic activities have historically centred around 

agriculture, cattle ranching, and mining. Large-scale deforestation and conversion of forest 

areas into agricultural land and pastures have been observed in the region (Nepstad et al., 

2014). The expansion of soybean cultivation has been a prominent driver of land use change 

in the Xingu watershed (Aguiar et al., 2016). Additionally, mining activities, particularly gold 

mining, have negatively impacted the environment and local communities (Hollanda et al., 

2020). 

It is worth noting that the Xingu watershed also supports indigenous communities 

that rely on traditional livelihoods such as fishing, hunting, and gathering. These 

communities play a crucial role in the preservation of cultural heritage and the sustainable 

management of natural resources within the watershed (Fearnside, 2005). 

The Xingu Watershed exhibits a tropical climate, as indicated by the Koopen-Geiger 

climate classification system, as shown in Figure 1. According to studies conducted by Silva 

et al. (2019) and Machado et al. (2021), most of the Xingu Watershed falls under the Af 

climate type, which represents a hot and humid tropical climate with no dry season. This 

classification is consistent with the overall climate of the Amazon rainforest region, 

characterised by high temperatures and abundant rainfall throughout the year.  
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Figure 1 - Location of the study area (in yellow): a) Koppen climate classification; b) Land use and 
occupation and location of selected rain gauges in the Xingu river basin. Source: Research data. 

 

2.2. CHIRPS precipitation data  

 

Researchers employed classification and rainfall trend analysis tools to analyse 

historical precipitation data in the Xingu watershed. These methods were applied at a pixel-

by-pixel level, considering monthly accumulated precipitation. 

The researchers utilised the CHIRPS (Climate Hazards Group InfraRed 

Precipitation with Station data) dataset to obtain precipitation data. CHIRPS combines 

satellite-based precipitation estimates with ground-based rain gauge observations. This 

approach overcomes the limitations of each data source when used independently by 

capitalising on their respective strengths. Satellite-based estimates fill in data gaps where 

rain gauges are scarce or nonexistent, while rain gauges provide ground truth data to 

enhance the accuracy of satellite-based estimates. As a result, CHIRPS produces high-

quality, high-resolution precipitation data at a resolution of 0.05°. This dataset has diverse 

applications, including drought monitoring and flood forecasting. The methodology 

employed in CHIRPS is described in detail by Funk et al. (2015), and its reliability has been 

extensively tested and validated in various regions worldwide. 

The researchers obtained the CHIRPS data in matrix format and saved it as Tagged 

Image File (TIF) extensions. The dataset included annual precipitation values from 1981 to 

2020. The process of the spatial data was deployed using Matplotlib (Hunter, 2007) and 

Rasterio (Gillies et al., 2023) Python packages. 
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2.3. Metrics for Validation of CHIRPS Data  

 
Validation analyses were performed on monthly scales. CHIRPS data was validated 

by superimposing the rain gauge location point over the CHIRPS image pixel. The time scale 

used for the tests was monthly. The coefficient of determination R2 (Equation 1) was used 

to validate the CHIRPS data, and the result varied between 0 and 1. The closer the value is 

to 1, the more accurate the representation of the values obtained by CHIRPS, with a value 

of 1, a perfect correlation between the data sets. 

 

𝑅2 =
∑  𝑛

𝑡=1 [(𝑦𝑡−𝑦)(�̂�𝑡−�̂�)]
2

∑  𝑛
𝑡=1 [𝑦𝑡−𝑦]

2
∑  𝑛

𝑡=1 [�̂�𝑡−�̂�]
2                Eq1 

 

To validate the remote sensing data, the correlation coefficient (Eq. 2) was used; the 

closer to 1, the better the representation of the values obtained by remote sensing, a perfect 

correlation between the data sets. A measure of quantification of the error associated with 

precipitation estimates Root Mean-Square Error (RMSE) (Eq. 2) was used. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑  𝑛

𝑖=1 [𝑍. (𝑥𝑖) − 𝑧(𝑥)]2    Eq2 

 

The percentage of bias (Eq. 3) represents the tendency of remote sensing values to 

underestimate or overestimate the values collected by the stations.  

 

𝑃𝑏𝑖𝑎𝑠 =  ∑  𝑛
𝑖=1

(𝑂𝑖−𝑆𝑖)2

∑  𝑛
𝑖=1 𝑂𝑖

. 100  Eq3 

 

Where n is the number of measured data; Oi and Si are observed and estimated 

data, respectively, at time i. 

The agreement index (d) was elaborated by Willmott (1981) and used to identify the 

degree of agreement between the values of the stations and the values obtained by remote 

sensing, with 1 being a perfect agreement (Eq. 4).  

 

𝑑 =  
∑    (𝑜𝑖−𝑒𝑖)2

∑  𝑛
𝑖=1 (|𝑒𝑖−𝑜|+ |𝑜𝑖−𝑜|)2   Eq4 
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Where o is equal to the average value of the data observed by the stations and e is 

the remote sensing data of the CHIRPS.   

Finally, the Nash-Sutcliffe efficiency coefficient was also determined. Varying from 

infinity to one, it states that the closer to one, the more accurate the prediction of the 

simulated data. The coefficient was calculated using the following formula (Eq. 5): 

 

𝑁𝑆𝐸 =  
 ∑    (𝑦𝑖−𝑠𝑖)2

 ∑    (𝑦𝑖−𝑜𝑖)2 . 100  Eq5 

 

where 𝑦𝑖 is the observed value and 𝑜𝑖 represents the mean of the observed value. 

 

The Mean Squared Error (MSE) provides the mean of the squared difference 

between the goal value and model prediction. Following is the equation to compute the MSE 

value (Eq. 6): 

𝑀𝑆𝐸 =  
1

𝑛
∑  𝑛

𝑗=1  (𝑦𝑖 − ŷ)2  Eq6 

 

2.4. Trend analysis - Mann-Kendall non-parametric trend test 

 
The pixel-by-pixel analyses were performed on an annual scale to optimise the 

computer processing capacity. The non-parametric test of the trend for time series used in 

this research was proposed by (Mann, 1945; Kendall, 1975) and was applied to identify 

possible trends of reduction or increase of precipitation for the Xingu watershed in the time 

series of 39 years with data. The test is calculated according to equation 7.   

 

𝑆 =  ∑  𝑛
𝑖=2 ∑  𝑖=1

𝑗=1 𝑠𝑖𝑔𝑛𝑎𝑙(𝑥𝑗 − 𝑥𝑖) Eq7 

 

Where S is described as the result of the sum of (xj – xi). with xj taken as the first 

value after xi, n is the number of data points in the entire time series. Thus, in the peer-to-

peer analysis, each pairing will be assigned the values (Eq. 8): 

 

𝑠𝑖𝑔𝑛𝑎𝑙 = {+1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0 0 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0 − 1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0    Eq8 
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The probability distribution of the S statistic will tend towards normality when the 

number of observations (n) of the samples is large, with zero mean and variance calculated 

from Eq. 9: 

 

𝑉𝐴𝑅(𝑆) =  
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑  𝑞

𝑝=1 𝑡𝑝(𝑡𝑝 − 1)(2𝑡 + 5)] Eq9 

 

Where tp is the amount of data with equal values in a given group, q will be the 

number of groups with equal values in the time series in a group p. 

The Mann-Kendall test statistic is based on the value of the variable ZMK, calculated 

according to equation 10. 

 

𝑍𝑀𝐾 = {
𝑆−1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓 𝑆 >  0 0 𝑖𝑓 𝑆 = 0  

𝑆−1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓 𝑆 < 0  Eq10 

 

2.5. Sen’s Slope Analysis 

 
Once significant trends have been identified, it is important to estimate the magnitude 

of this trend. For the test, the annual temporal scale was used. In the various methods 

applied for this purpose, the normality of the dataset is a prerequisite, being highly sensitive 

to outliers. To overcome this limiting factor, applying a more robust test adapted to non-

parametric data, such as Sen’s Slope (SS), is necessary to identify magnitudes in time series 

trends (Eq. 11). 

 

𝑆𝑆 = 𝑀𝑒𝑑𝑖𝑎𝑛 {[(
𝑥𝑖− 𝑥𝑗

𝑖−𝑗
)

𝑗 = 1

𝑗 = 𝑛 − 1

]
𝑖=𝑗 + 1

𝑖 = 𝑛

}     Eq11 

where xi and xj are pairs at given times i and j (j > i), respectively. 

 

3. RESULTS 

 
Table 1 shows the percentage of failures presented in each pluviometric station along 

the historical series. Among the stations, the variation in percentage was at least 6.2% 

(00352005) and at most 28.5% (00750000). In addition, only 22% of the stations had failures 

below 10% of the historical series. On the other hand, about 54.5% of the stations had 

failures between 10% and 20%, and finally, approximately 22.7% of the stations had failures 

above 20% in their historical records. 
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Table 1 - Information and faults on selected rainfall stations within the study area. 

Station Code Longitude  Latitude Missing data (%) 

01453000 -53.9986 -14.6119 8.28056845 

01354000 -54.2811 -13.4483 11.5168144 

01353001 -53.2417 -13.8419 14.8585901 

01352001 -52.4544 -13.4956 10.2926692 

01352000 -52.4128 -13.8836 12.4665822 

01255002 -54.9125 -12.5178 14.0847052 

01251001 -51.8264 -12.9397 8.32278036 

01154001 -54.9981 -11.9292 15.0344731 

01152000 -51.9889 -11.73 27.0578303 

01052000 -52.7461 -10.8072 11.3198255 

00855000 -55.1194 -8.1872 7.09863515 

00750000 -50.8289 -7.8283 28.5211763 

00651002 -51.1492 -6.7444 27.205572 

00651001 -51.7986 -6.7025 21.1833404 

00554000 -54.5208 -5.6503 13.1771493 

00452000 -52.7203 -4.6656 11.6364148 

00352005 -52.5419 -3.3078 6.24736176 

00352001 -52.2131 -3.2142 15.7380048 

00351002 -51.5681 -3.7231 15.8998171 

00252001 -52.9186 -2.3364 11.4253553 

00152001 -52.2333 -1.7333 18.0104123 

00151003 -51.9178  -1.5825 23.0688054 

Source: Research data. 

 

Table 2 summarises the results of the applied metrics (RMSE, MSE, NSE, R², d and 

PBIAS) for verifying the error and correlation between the data observed on the surface and 

those estimated by satellite. 

Among the error values, the RMSE obtained annual values ranging between 54.6 

and 196.7 mm between posts. Around 86.3% of the posts show errors in millimetres below 

88 mm, and only 13.2% show errors above 100 mm. 
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Table 2 - Analysis of monthly precipitation between ground stations and satellite pixels. Variables refer to root 
mean square error (RMSE); Mean Squared Error (MSE); Nash-Sutcliffe efficiency coefficient (NSE); the 
coefficient of determination (R2); Willmott concordance index (d), and percentage of bias (PBIAS). 

Rain gauge 
Code 

RMSE MSE NSE R2 d PBIAS 

151003 144.62 20916.0 0.09 0.09 0.57 7.67 

152001 58.98 3479.15 0.79 0.79 0.82 -5.14 

252001 66.06 4363.88 0.79 0.79 0.81 4.48 

351002 111.03 12327.67 0.42 0.42 0.71 33.08 

352001 81.39 6623.66 0.7 0.7 0.81 -3.97 

352005 75.23 5659.33 0.78 0.78 0.8 0.96 

452000 72.4 5241.86 0.63 0.63 0.75 23.01 

554000 79.15 6264.61 0.57 0.57 0.73 15.61 

651001 66.48 4419.28 0.71 0.71 0.77 4.01 

651002 51.02 2603.18 0.79 0.79 0.8 6.61 

750000 59.17 3501.03 0.77 0.77 0.79 -3.8 

855000 88.4 7814.9 0.73 0.73 0.79 -9.61 

1052000 68.34 4670.55 0.74 0.74 0.81 6.19 

1152000 58.62 3435.98 0.8 0.8 0.82 -0.38 

1154001 196.71 38696.32 0.43 0.43 0.72 -25.05 

1251001 64.92 4214.91 0.77 0.77 0.82 4.55 

1255002 63.8 4071.08 0.75 0.75 0.83 11.14 

1352000 60.52 3662.52 0.76 0.76 0.83 10.71 

1352001 57.16 3267.44 0.84 0.84 0.85 3.92 

1353001 56.57 3200.58 0.79 0.79 0.84 10.09 

1354000 54.6 2981.48 0.86 0.86 0.85 -3.13 

1453000 61.14 3737.89 0.81 0.81 0.82 4.18 

Source: Research data. 

 

As for the PBIAS values, the results show a variation between -25.05 and 33.08 

between posts. On the other hand, about 68.1% of the results showed an overestimation 

and 31.8% an underestimation of the error values when comparing the values of the surface 

stations with those of the satellite. Despite this, it is observed that only 9% of the results had 

error values close to zero, which is considered similar. 
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Regarding the correlation values, the NSE showed a good relationship with values 

above 0.7 for about 77.2% of the stations, mainly the stations 01152000, 01352001, 

01354000 and 01453000, which presented values above 0.8. On the other hand, 22.7% of 

the stations showed a low correlation below 0.7, mainly station 00151003, which had the 

worst relationship with a value of 0. 

The R² values also showed a good correlation (>0.7) between the two compared 

databases in about 77.2% of the stations, mainly the stations 01152000, 01352001, 

01354000 and 01453000, which had the best correlations with values above 0.8. Only 

22.7% of the ranks exhibited a low correlation (<0.7), with rank 00151003 again showing the 

worst correlation. Finally, the “d” values show an agreement above 0.7 for about 95.4% of 

the posts, and only post 00151003 showed a low agreement of 0.57. 

Figure 2 presents maps with the values of the applied metrics (RMSE, R², d and 

PBIAS) in a spatialised form for error verification and correlation of data observed on the 

surface with those estimated by satellite in the Xingu watershed. 

It is noted, spatially, within the Xingu watershed, that the RMSE (Fig. 2a) error values 

showed errors greater than 160 mm in the western region of the basin. On the other hand, 

the southern portion of the basin showed smaller errors, below 100 mm, and in the rest, 

errors were around 140 mm. For the spatialised values of PBIAS (Fig 2d), the northern 

region of the basin presented higher overestimation values than the southern and western 

portions of the basin. Overall, the PBIAS values show a slight average overestimation of 

18.7 for much of the Xingu watershed. 

As for data correlation, the spatialised values of R² (Fig 2b) showed a better 

performance in the southern portion of the basin, with values above 0.6. In the rest of the 

basin, the R² values exhibited a drop in correlation below zero and, in the northern portion, 

with negative values, an inverse correlation concerning the southern portion. 

Finally, the spatialised values of d (Fig 2c) show a better performance above 0.7 in 

the southern portion and a low performance (<0.5) in the northern part of the basin. 

Generally, most basins present low performance compared to the values (station and 

satellite). 
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Figure 2 - Spatialised values of the applied metrics (annual): a) root mean square error (RMSE); b) 
determination coefficient (R2); c) Willmott concordance index (d);  d) percentage of bias (PBIAS). 

Source: Research data. 
 

Table 3 summarises the precipitation trends of the stations within the Xingu basin. 

Among the stations, about 86.3% show that there is no change in precipitation trends. 

However, only 13.6% of the stations showed a trend towards reduced rainfall, as evidenced 

by stations 151003, 554000 and 1453000. 
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Table 3 - Monthly Mann-Kendall (MK) precipitation trends for the selected stations. 

Rain gauge 
Code 

MK_trend MK_pvalue Zmk_value MK_slope 

151003 decreasing 1.31E-09 -6.0658387 -0.224 

152001 no trend 0.67191414 0.42352242 0.01848739 

252001 no trend 0.5593602 -0.5837921 -0.0219697 

351002 no trend 0.68037617 0.41194987 0.01461318 

352001 no trend 0.63382385 0.47635168 0.01735537 

352005 no trend 0.81024886 0.240105 0.00847458 

452000 no trend 0.84377254 -0.1970703 -0.0054945 

554000 decreasing 0.00259404 -3.0121503 -0.1029488 

651001 no trend 0.278928 -1.0827306 -0.0388889 

651002 no trend 0.99123823 0.01098147 0 

750000 no trend 0.50411274 -0.6680327 -0.0171429 

855000 no trend 0.06403078 1.85196547 0.07931034 

1052000 no trend 0.16624219 -1.3843798 -0.0210386 

1152000 no trend 0.48482505 0.6985632 0 

1154001 no trend 0.16544794 1.38697974 0 

1251001 no trend 0.83310973 -0.2107149 0 

1255002 no trend 0.57760081 -0.5568926 0 

1352000 no trend 0.30960627 -1.0160485 0 

1352001 no trend 0.56007171 -0.582735 0 

1353001 no trend 0.09842693 -1.6525281 -0.0235 

1354000 no trend 0.83825939 -0.2041204 0 

1453000 decreasing 0.02483977 -2.2438854 -0.0458537 

Source: Research data. 

 

Note in Figure 3a that the rainfall trend over the basin shows an increasing pattern in 

the central-north region, except for the northern end, which showed a downward trend. On 

the other hand, the central-southern region of the basin showed trends of reduction in 

precipitation, mainly areas in the central-east, where there was a strong reduction in the 

volume of rainfall. 
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Figure 3 - Map of the rainfall trend (annual) of the applied rainfall indexes in the study area: a) Sen s 

Slope magnitude of the trend for precipitation value (mm.month-1).  
Source: Research data. 

 

3.1. Intraseasonal analysis 

 
Figure 4 shows the values of the metrics applied to compare the error and correlation 

between the values observed at surface stations and the values estimated by the satellite, 

separated into dry and wet periods. Among the R² values, about 80.9% of the stations 

showed good correlation with values above 0.6 for the dry period. However, about 19.1% 

showed correlations below 0.6, mainly rank 151003, which presented the worst performance 

with values close to 0. Regarding the wet period, about 71.4% of the stations had a low 

performance, presenting values below 0.6, mainly stations 151003 and 1154001, and only 

28.5% of the stations showed a good performance, with values of R² above 0.6. The best 

correlations between the data showed a greater number of stations with better performance 

in the dry period than in the wet period. For d values, about 95.2% of the stations showed 

agreement above 0.6 for the dry period and 76.1% of the stations for the wet period. In 

general, the d values showed similarities with the R² values, where the two metrics show 



Caderno de Geografia (2024) v.34, n.78 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2024v34n.78p.815 
 

829 

better performance between surface data concerning satellite data in the dry period than in 

the wet period. 

 

 
Figure 4 - Values of the applied metrics (R2, d, RMSE and PBIAS) in the selected rainfall stations, 

separated into rainy (blue) and dry (red) seasons. Source: Research data. 

 

The RMSE values show that, in the wet period, errors are greater than 50mm for all 

stations, and only five of them (151003, 352001, 554000, 855000 and 1154001) showed 

errors above 100mm, with station 1154001 being the one that presented errors above 

250mm. In the dry period, the errors were below 50mm in about 85.7% of the stations, and 

only 14.2% showed errors above 50mm, with station 151003 presenting errors above 

100mm. In general, error values were higher during the wet period compared to the dry 

period. Among the PBIAS values, in the wet period, about 71.4% of the stations showed an 

overestimation, and approximately 28.5% presented an underestimation of the errors. In the 
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range of PBIAS values, about 52.3% of stations had errors between 10 and -10, some very 

close to zero, that is, within the ideal value for PBIAS. On the other hand, about 38% of the 

stations had higher errors, above 10 or -10, mainly stations 452000 (overestimation) and 

1154001 (underestimation), which showed the highest PBIAS errors. In the dry period, 

approximately 33.3% of the stations presented an overestimation and 66.6% an 

underestimation of the PBIAS error values. In the range of PBIAS values, about 71.4% of 

the stations showed errors between 10 and -10, some close to zero. On the other hand, 

about 28.5% of stations showed higher errors, such as station 452000 (overestimation) and 

station 1154001 (underestimation). In general, error values tend to be overestimated during 

the wet period and underestimated during the dry period. 

Figure 5 shows the values of the annual precipitation trends in the wet and dry periods 

between seasons. It can be noted that the annual trends in precipitation showed a slight 

increase in about 28.5% of the stations and a slight reduction in about 42.8% of the stations. 

However, about 28.7% of stations showed no change in the trend in annual rainfall. 

 

 
Figure 5 - Precipitation trend (Mann-Kendall slope) of the selected rainfall stations, 

separated into annual (green), rainy (blue) and dry (red) seasons.  
Source: Research data. 



Caderno de Geografia (2024) v.34, n.78 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2024v34n.78p.815 
 

831 

For the wet period, the trends showed an increase in about 66.6% of the stations, 

mainly in stations 855000 and 1154001, which presented higher trend values. On the other 

hand, only 33.3% of the stations showed trends of reduced precipitation during the wet 

period. In the dry period, about 19% of the stations showed a trend towards increased 

precipitation and about 33.3% towards a reduction, mainly station 1511003, which showed 

a more significant reduction. However, about 47.6% of the stations had no change in trends 

for the dry season. In general, rainfall trends in the three analysed periods show that, during 

the wet period, rainfall volumes increased between 0.2 and 1.0 mm compared to the dry 

period or annually. 

 

3.2. Rainy season analysis 

 
Table 4 summarises the results of the metrics applied for error verification (RMSE 

and PBIAS) and correlation (R² and d) between data observed on the surface and estimated 

by satellite for the wet period. 

Among the error values, the RMSE obtained values in the wet period that varied 

between 62 and 270.3 mm between seasons. About 76.1% of the stations show errors in 

millimetres below 100 mm, and only 23.8% show errors above 100 mm during the wet 

season. The results show a variation between the PBIAS values -24.5 and 20.3. Among the 

stations, about 66.6% of the results showed an overestimation and 23.8% an 

underestimation of the error values, compared with the surface stations’ values with the 

satellite ones. Despite this, it is observed that only 9.5% of the results had error values close 

to zero, which is considered similar. 

The R² values also showed a moderate correlation (>0.6) between the two databases 

compared in about 28.5% of the stations, mainly stations 152001 and 252001, which had 

the best correlations with values above 0, 7. On the other hand, about 71.4% of stations 

exhibited a low correlation (<0.6), with stations 252001 and 1154001 not showing any 

correlation. Finally, the “d” values show a moderate agreement above 0.6 for about 71.4% 

of the stations, and about 28.5% showed a low agreement below 0.6. 

Over half of the stations present low performance, which overestimates the values 

between the two compared databases. On the other hand, some stations presented errors 

that were considered low, and there was a low agreement between the values observed by 

the stations and those estimated by the satellite. 
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Table 4 - Precipitation analysis between rain gauge stations and satellite pixels during the rainy period. 
Variables refer to root mean square error (RMSE); the coefficient of determination (R2); Willmott concordance 
index (d), and the percentage of bias (PBIAS). 

Rain Gauge 
Code 

RMSE rainy 
season 

(mm.month-1) 

R2 rainy season d rainy season PBIAS rainy 
season %) 

651002 62.0253049 0.55870188 0.66581641 8.16856711 

152001 66.6891177 0.76230265 0.79793506 -4.5441857 

1354000 72.2397205 0.6695934 0.69719054 -2.6170845 

750000 72.4824729 0.40795862 0.57868796 0.09011111 

1352001 74.4424209 0.67217515 0.70998443 4.04694981 

1353001 75.1244958 0.47455354 0.67716277 13.7792872 

1152000 75.3824104 0.53600711 0.63714218 2.77036432 

252001 78.6243377 0.71174765 0.76223587 2.88565005 

1453000 80.8531434 0.6359375 0.68306685 6.15864598 

1352000 81.4410402 0.44181058 0.65479153 12.637971 

1255002 82.2475397 0.38108518 0.63873197 14.0375442 

1251001 82.7599641 0.54969359 0.64930361 4.53998446 

651001 83.6780506 0.47421151 0.61435953 6.30456422 

1052000 87.786987 0.32718903 0.5908666 9.59824098 

452000 90.0778673 0.39776589 0.65584318 20.3417945 

352005 97.4993052 0.66368593 0.72865879 -1.0916555 

554000 103.881342 0.25787934 0.56857201 18.0219087 

352001 108.275189 0.45908184 0.68693393 0.90763738 

855000 112.058058 0.39713671 0.58146303 -6.8751205 

151003 167.487646 0.02637277 0.52219058 16.7235557 

1154001 270.347818 0.08998185 0.51444529 -24.571918 

Source: Research data. 

 

The following Figure 6 presents, in a spatialised form, maps with the values of the 

applied metrics (RMSE, R², d and PBIAS) for error verification and correlation of data 

observed on the surface with those estimated by satellite for the wet period in the 

hydrographic basin of the Xingu. 
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Figure 6 - Spatialised values of the applied metrics (rainy season): a) root mean square error (RMSE); b) 

determination coefficient (R2); c) Willmott concordance index (d); d) percentage of bias (PBIAS).  
Source: Research data. 

 

It is noted, spatially, within the Xingu watershed, that the RMSE (Fig 6a) error values 

showed errors greater than 300 mm in the northwest and southwest regions of the basin. 

On the other hand, in most of the basin, smaller errors were shown, below 100 mm, mainly 

in the eastern and southern portions. For the spatialised values of PBIAS (Fig 6d), the north 

and south regions of the basin presented high overestimation errors to the northwest portion, 

which had high underestimation errors. The error values were slightly closer to zero in the 

rest of the basin. 
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Regarding the data correlation, the spatialised values of R² (Fig 6b) presented a 

better performance in the north and southeast portions of the basin, with values above 0.5. 

In the rest of the basin, the R² values exhibited a drop in correlation below 0.5, mainly in the 

western portion, where the R² values were 0.4. 

Finally, the spatialised values of d (Fig 6c) show a better performance in the southern 

portion, with a value of 0.68, and a poor performance of 0.62 in the western part of the basin. 

Most of the basin generally has low error and performance values compared to the 

databases (station and satellite). 

Table 5 summarises the wet season precipitation trend values between stations 

within the Xingu basin. Between seasons, about 72.7% show no change in precipitation 

trends. However, around 13.6% of the stations showed a decreasing trend, as evidenced 

by stations 151003, 554000 and 1453000, and 13.6% of increased rainfall, as evidenced by 

stations 855000, 1152000 and 1154001, for the wet season, in the Xingu basin. 

 

Table 5 - Mann-Kendall (MK) precipitation trends for the rainy season for the selected stations. 

Rain Gauge 
Code 

MK trend rainy 
season 

MK p-value 
rainy season 

Zmk values 
rainy season 

MK slope rainy 
season 

151003 decreasing 0.00218428 -3.06396 -0.4146973 

152001 no trend 0.86843832 -0.1656425 -0.0245858 

252001 no trend 0.09695604 1.65979332 0.24407183 

351002 no trend 0.29946686 1.03757737 0.14826683 

352001 no trend 0.80280034 -0.2497246 -0.0345786 

352005 no trend 0.15434356 1.42435561 0.22885122 

452000 no trend 0.70203512 0.38257472 0.04573228 

554000 decreasing 0.0149254 -2.4341842 -0.2795554 

651001 no trend 0.23546357 -1.186402 -0.1236208 

651002 no trend 0.41858813 0.80887312 0.06965772 

750000 no trend 0.11548282 1.57402003 0.13348768 

855000 increasing 0.00017037 3.75933363 0.50552168 

1052000 no trend 0.07156332 -1.8018862 -0.1782032 

1152000 increasing 0.01749258 2.37618725 0.24338349 

1154001 increasing 9.20E-07 4.90792988 0.97513804 

1251001 no trend 0.14437988 1.4596733 0.17212833 

Continua... 



Caderno de Geografia (2024) v.34, n.78 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2024v34n.78p.815 
 

835 

Continuação... 

1255002 no trend 0.57491363 0.56082971 0.0521334 

1352000 no trend 0.19219358 1.30411733 0.13135558 

1352001 no trend 0.09345566 1.67744418 0.18974284 

1353001 no trend 0.99127872 -0.0109307 -0.0009307 

1354000 no trend 0.45679651 0.74413218 0.09015798 

1453000 decreasing 0.02801483 -2.1970787 -0.274728 

Source: Research data. 

 

The maps in Figure 7 show the daily rainfall trend during the rainy season in the Xingu 

basin using Slope Sen. 

 

 
Figure 7 -  Map of the rainfall trend (rainy season) of the applied rainfall indexes in the study area: a) 

Precipitation value (mm). Source: Research data. 
 

Note in Figure 7a that the rainfall trend over the basin shows a slight pattern of 

increased rainfall in the north, east and southwest regions. On the other hand, the central-

west and south regions of the basin showed slightly decreasing trends in rainfall volumes 
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over these areas. Generally, most of the Xingu basin shows a pattern of increasing rather 

than decreasing rainfall during the wet period. 

 

3.3. Dry season analysis  

 
Table 6 summarises the metrics results used to analyse the errors (RMSE and 

PBIAS) and the correlation (R² and d) between the data observed on the surface and the 

data estimated by satellite during the dry period. 

Regarding the errors, the RMSE registered values varying between 26.5 and 117.5 

mm during the rainy season in the analysed stations. About 95.2% of the stations had errors 

below 70 mm, while only 4.7% exceeded 100 mm during the dry period. As for the PBIAS, 

the results ranged from -27.7 to 31.4. Among the stations, approximately 61.9% of the 

results indicated an overestimation. In comparison, 33.3% underestimated the errors when 

comparing the values of the surface stations concerning the values estimated by the 

satellites. However, only 4.7% of the results approached zero, indicating similar values. 

The R² values also showed a good correlation (>0.7) in about 52.3% of the stations 

analysed, emphasising station 1354000, which obtained the best correlation with a value of 

0.8. On the other hand, approximately 47.7% of stations showed a low correlation (<0.7), 

with station 1154003 registering the worst correlation, with an R² value of 0.1. Finally, the 

“d” values demonstrated a moderate agreement above 0.7 in approximately 85.7% of the 

stations, while approximately 14.2% presented a low agreement below this limit. 

In summary, more than half of the stations showed satisfactory performance and a 

tendency to overestimate the values compared to the satellite databases. On the other hand, 

only one station presented errors that were considered high, and there was a low agreement 

between the values observed in the stations and the values estimated by the satellite. 

It is possible to observe that, within the Xingu basin, the RMSE (Fig 8a) error values 

indicate errors above 50 mm in the southern region. On the other hand, in most of the basin, 

the errors were smaller, below 50 mm, mainly in the northern part, where the lowest errors 

were recorded during the dry period. As for the spatialised values of the PBIAS (Fig 8d), the 

southern region of the basin presented small overestimation errors compared to the western 

portion, which had the largest underestimation errors. In the rest of the basin, the errors 

were slightly underestimated. 

Regarding the data correlation, the spatialised values of R² (Fig 8b) showed a better 

performance in the north and southeast parts of the basin, with values above 0.7. In the rest 
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of the basin, there was a decrease in correlation, falling below 0.7, especially in an isolated 

region further south, where R² values were 0.6. Finally, the spatialised values of d (Fig 8c) 

performed well throughout the basin, with values above 0.7, especially in the northern part, 

where the value was 0.8 during the dry period. Most of the basin generally has low error 

values and good agreement between compared data from stations and satellites during the 

dry period. 

 
Table 6 - Precipitation analysis between ground stations and satellite pixels during the dry period. Variables 
refer to root mean square error (RMSE); the coefficient of determination (R2); Willmott concordance index (d), 
and the percentage of bias (PBIAS). 

Rain Gauge 
Code 

RMSE dry 
season 

(mm.month-1) 

R2 dry season d dry season PBIAS dry 
season (%) 

651002 36.9397058 0.7140643 0.75621309 2.36408407 

152001 50.149729 0.77034468 0.80399932 -6.0279846 

1354000 27.4581863 0.8193738 0.83038905 -6.0555736 

750000 41.9027021 0.6590636 0.74478714 -16.268051 

1352001 31.6689638 0.70958674 0.79813462 3.12179438 

1353001 27.7112471 0.78924048 0.81651239 -8.6271067 

1152000 34.6273349 0.78127074 0.80287252 -13.662858 

252001 50.5345293 0.79152767 0.80188145 7.85247719 

1453000 30.8302332 0.76856302 0.79854857 -5.5610426 

1352000 26.553437 0.7669248 0.80474449 -0.2408813 

1255002 37.2693793 0.67254692 0.79872449 -3.5291019 

1251001 39.8982137 0.56713579 0.75451505 4.59991808 

651001 42.9834787 0.61652419 0.72107447 -2.6287063 

1052000 40.5896159 0.74496664 0.81008513 -7.267063 

452000 48.8054744 0.48757872 0.64441919 31.470683 

352005 42.7666795 0.7545311 0.75043381 7.07635129 

554000 41.9194301 0.58824815 0.68464054 8.62733183 

352001 39.314019 0.76563869 0.77320204 -18.187055 

855000 55.6153422 0.63478299 0.75129301 -20.150829 

151003 117.517576 0.11234122 0.56899655 -4.5923196 

1154001 66.7208083 0.50672563 0.7039223 -27.795186 

Source: Research data. 
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The image illustrates maps that represent in Figure 8, in a spatial way, the metrics 

used (RMSE, R², d and PBIAS) to evaluate the precision and the correlation between the 

data observed on the surface and the data estimated by satellite during the dry period in the 

hydrographic basin of the Xingu. 

 

 
Figure 8 - Maps with the spatialised values of the applied metrics (dry season): a) root mean square error 

(RMSE); b) determination coefficient (R2); c) Willmott concordance index (d); d) percentage of bias (PBIAS). 
Source: Research data. 

 

Table 7 below summarises the dry season precipitation trend values between stations 

within the Xingu basin. Between seasons, about 63.6% show no change in precipitation 

trends, and about 36.3% show a decreasing trend for the dry period in the Xingu basin. 
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Thus, the rainfall pattern during the dry period is maintained in most stations. However, 

some show a reduction pattern, which may prolong the dry period in these places within the 

Xingu watershed. 

 

Table 7 - Trend of dry season precipitation through Mann-Kendall (MK) between selected stations. 

Rain Gauge 
Code 

MK trend dry 
season 

MK p-value dry 
season 

Zmk value dry 
season 

MK slope dry 
season 

151003 decreasing 7.97E-08 -5.3677686 -0.4292273 

152001 no trend 0.2963409 1.04431235 0.09619373 

252001 decreasing 0.01163345 -2.5230721 -0.1636364 

351002 no trend 0.80726493 0.24395596 0.0116489 

352001 no trend 0.09180732 1.6859402 0.08733322 

352005 no trend 0.63273578 -0.4778798 -0.0269565 

452000 no trend 0.93474654 -0.0818745 -0.0026742 

554000 decreasing 0.01349444 -2.4704468 -0.1248677 

651001 no trend 0.72500718 -0.3517748 -0.0154833 

651002 no trend 0.94670915 -0.0668399 -0.0009804 

750000 decreasing 0.0015082 -3.1731005 -0.184 

855000 no trend 0.25896815 1.12883332 0.00652174 

1052000 no trend 0.68502983 -0.4056091 0 

1152000 no trend 0.83817641 -0.2042266 0 

1154001 no trend 0.06194381 -1.8666978 0 

1251001 no trend 0.1931735 -1.3012482 0 

1255002 no trend 0.20191317 -1.2761198 0 

1352000 decreasing 0.00130431 -3.2150305 0 

1352001 decreasing 0.0067456 -2.709149 0 

1353001 decreasing 0.00031618 -3.6016681 -0.044 

1354000 no trend 0.62290514 -0.4917372 0 

1453000 decreasing 0.03533468 -2.104502 0 

Source: Research data. 

 

The maps in Figure 9 show the daily trend of rainfall during the dry period in the Xingu 

basin using the Sen’s Slope. 
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Note in Figure 9a that the rainfall trend over the basin shows a slight increase in 

rainfall in the northern portion of the basin. On the other hand, the eastern portion showed 

trends with a slight pattern of reduction in rainfall volumes over this area. Most of the Xingu 

basin generally shows a trend pattern within the usual rainfall pattern during the dry period.’ 

 

 
Figure 9 - Map of the rainfall trend (dry season) of the applied rainfall indexes in the study area: a) 

Magnitude of change - Precipitation value (mm). Source: Research data. 

 

The Sen’s slope analysis for the dry season reveals distinct regional variations. The 

northern part of the watershed shows increased precipitation, suggesting a trend towards 

wetter conditions in this area. The central and southern regions exhibit a decrease in rainfall, 

with the centre-east region experiencing the most significant decline. This prominent 

decrease in the centre-east is particularly concerning, as it can exacerbate existing 

environmental challenges, such as soil erosion and reduced water availability, further 

impacting the local biodiversity and water resources critical to the region. These findings 

highlight the importance of targeted water management strategies to address the varying 

precipitation trends across the Xingu watershed. 
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4. CONCLUSIONS 

 
Among the validation analyses of the CHIRPS data with the rain gauge stations, 

about 52.3% appreciated a good R² performance (>0.7) and an overestimation of the lowest 

errors during the dry season. During the rainy season, there was a reduction in the R² 

performance (<0.7) in about 71.4% of the stations and with higher overestimated errors 

about the dry season. Spatially, the northern portion of the basin showed better performance 

and lower errors in both periods (dry and wet). On the other hand, the western and central-

southern portions showed a decrease in performance and higher errors in the regions of the 

study area. 

For the trends of rainfall in the Xingu basin, some changes were observed in the 

rainfall regime (millimetres and number of days) during the rainy and dry seasons. About 

72.7% appreciated neutrality among the stations used, and 13.6% increased or decreased 

rainfall during the rainy season. On the other hand, the trends during the dry period 

appreciated about 63.6% of neutrality and 36.3% of rainfall reduction. 
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