

MODELO ANATÔMICO DE TRATO REPRODUTOR MASCULINO PARA TREINAMENTO PRÁTICO DE ORQUIECTOMIA EM PEQUENOS ANIMAIS

ANATOMICAL MODEL OF MALE REPRODUCTIVE TRACT FOR PRACTICAL ORCHIECTOMY TRAINING IN SMALL ANIMALS

Matheus Henrique Ferreira de Carvalho¹

Carolina Gaspar Vasque¹

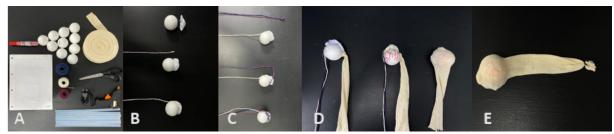
Leonardo Gonçalves Satkauskas¹

Natália Santos de Carvalho²

Victor José Vieira Rossetto³

INTRODUÇÃO: O conceito de simulação envolve o uso de recursos virtuais ou realísticos para reproduzir a experiência da vida real, podendo os modelos anatômicos variar quanto a fidelidade com as estruturas anatômicas. Durante os últimos 20 anos, a simulação foi difundida como uma importante ferramenta para educação cirúrgica (COBB et al., 2016; McGAGHIE, et al., 2014). Desta forma, objetivou-se com o presente trabalho apresentar um modelo anatômico de baixo custo e fácil elaboração para que os alunos de graduação em medicina veterinária possam realizar o treinamento da técnica cirúrgica de orquiectomia, previamente a realização do procedimento em animal in vivo, e de modo que assimilem o conhecimento teórico-prático de forma mais efetiva. MATERIAL E MÉTODOS: Foi elaborado junto à disciplina de Obstetrícia Veterinária, do Curso de Medicina Veterinária da Pontificia Universidade Católica de Minas Gerais, Campus Poços de Caldas, modelo anatômico que representasse o testículo com seus devidos componentes, afim de possibilitar treinamento prático de técnica de orquiectomia em pequenos animais para os alunos de graduação em medicina veterinária. Para a elaboração dos modelos foram utilizados folha de papel almaço; malha tubular; barbantes nas cores branca, vermelha e azul; tesoura; cola quente; pincel anatômico vermelho e bolinhas de isopor de 50 mm de diâmetro cada (Figura 1A). A folha de papel almaço foi moldada em formato levemente afilado, de modo a mimetizar os epidídimos (Figura 1B); os barbantes foram cortados em um comprimento de

¹ Discente do curso de Medicina Veterinária PUC Minas – Campus Poços de Caldas.


² Residente em Clínica Médica e Cirúrgica de Pequenos Animais PUC Minas – Campus Poços de Caldas.

³ Docente do curso de Medicina Veterinária PUC Minas – *Campus* Poços de Caldas.

aproximadamente 20 cm cada, e unidos por um nó (Figura 1C); a malha tubular foi cortada em um comprimento de aproximadamente 20 cm, e ocluída por meio de um nó em uma das extremidades, de modo que após invertida, o nó era posicionado internamente (Figura 1D). Com o auxílio de cola quente, a folha moldada de papel almaço foi fixada à bolinha de isopor. Em seguida, o barbante branco foi colado no "epidídimo", na região representada pela cauda do mesmo, representando dessa forma, o ducto deferente (Figura 1D). De forma semelhante, foram fixadas à porção distal do "epidídimo" as extremidades proximais dos barbantes azul e vermelho. Para representar o plexo pampiniforme, ambos os barbantes foram fixados em "zig-zag"; Em seguida, com auxílio de um pincel anatômico vermelho foi desenhado vasos sanguíneos na bolinha de isopor, representando os vasos testiculares (Figura 1 E); Colado então o nó interno da malha tubular na folha de papel, de forma a envolver todos os itens no interior da malha; Por fim, foi dado um nó na extremidade oposta unindo barbantes e a malha tubular (Imagens 1 F e G). Os modelos foram entregues aos alunos antes da aula prática de orquiectomia que ocorre na disciplina de Obstetrícia Veterinária, de acordo com a CEUA 23/2022. Foram realizadas todas as manobras operatórias no modelo anatômico sob supervisão do docente responsável e os monitores envolvidos. Todas as dificuldades e eventuais falhas eram corrigidas ao longo da execução da técnica. Durante a aula prática com animais vivos foi verificada assimilação do conhecimento previamente adquirido, bem como de habilidades psico-motoras uma vez que era aparente a desenvoltura e autonomia dos alunos durante a realização das mesmas manobras operatórias. Não foram verificadas intercorrências com os animais atendidos nos períodos trans e pós-operatório. Além disso, notado ambiente tranquilo com menores demonstrações de estresse e desconforto dos alunos. RESULTADOS e DISCUSSÃO: De acordo com Cobb et al. (2016) o conceito de simulação envolve o uso de recursos virtuais ou realísticos para reproduzir a experiência da vida real. Nos últimos 20 anos, a simulação cirúrgica foi difundida como um importante método de educação cirúrgica. Muitos educadores acreditam que tal método é uma forma de apressar a aquisição de habilidades fundamentais, aumentando o desempenho entre os estudantes. Um estudo na Universidade de Yale demonstrou que o treinamento com simulador diminuiu em 30% o tempo cirúrgico e reduziu erros intraoperatórios em 85%. De fato, após o treinamento com o modelo proposto no presente trabalho, não foram verificados erros durante a cirurgia dos animais atendidos. Assim como declarado por Cobb. et al (2016) os alunos da PUC Minas que realizaram o treinamento prático no presente modelo anatômico demonstraram melhor compreensão da técnica, quando comparado a explicação teórica, em razão do maior domínio e segurança durante a realização do procedimento no animal in vivo, de forma a ser positivo o

uso de tal simulação previamente a realização do procedimento de fato. **CONSIDERAÇÕES FINAIS:** Conclui-se que por meio de materiais de baixo custo e com baixa dificuldade é possível desenvolver um modelo anatômico do trato reprodutor masculino para treinamento de técnica cirúrgica de orquiectomia, o qual gera impactos benéficos importantes na formação acadêmica de futuros profissionais, como melhor domínio da técnica e maior segurança durante a realização do procedimento em animais in vivo.

Figura 1: Passo à passo para elaboração do modelo anatômico

Fonte: Acervo pessoal dos autores.

Palavras-chave: Orquiectomia; Prática cirúrgica; Simulador de cirurgia; Treinamento de técnica cirúrgica.

Keywords: Orchiectomy; Surgical practice; Surgery simulator; Surgical technique training.

REFERÊNCIAS

COBB, M.II; TAEKMAN J.M; ZOMORODI, A.R; GONZALEZ, L.F3; TURNER, DA3. Simulation in Neurosurgery-A brief review and commentary. World Neurosurg. 2016.

MCGAGHIE, W.C; ISSENBERG, S.B; BARSUK, J.H; WAYNE, D.B. A critical review of simulation-based mastery learning with translational outcomes. Med Educ. 2014.