Proposition and Validation of Computational Solutions for Fault Detection in Power Transformers Based on the Duval Pentagon

Authors

  • Daniel Bastos Pontifícia Universidade Católica de Minas Gerais (PUC Minas)
  • Ian Rodrigues de Castro Silva Pontifícia Universidade Católica de Minas Gerais (PUC Minas)
  • Sabine Madsen Ficker Pontifícia Universidade Católica de Minas Gerais (PUC Minas)
  • Maury Meirelles Gouvêa Júnior Pontifícia Universidade Católica de Minas Gerais (PUC Minas)
  • Magali Rezende Gouvêa Meireles Pontifícia Universidade Católica de Minas Gerais (PUC Minas)

DOI:

https://doi.org/10.5752/P.2316-9451.e2024120205

Keywords:

Duval Pentagon, DGA, Dissolved gas analysis, Power transformer

Abstract

Power transformers are used in substations of electrical power systems for transmission and distribution of electricity between generators and end consumers. Efficient insulation and cooling systems provided by insulating oil are essential for a transformer operates properly. During transformer operation, insulating oil can have changes in dissolved gas concentrations resulting from thermal or electrical discharges and the follow-up and monitoring of the proportion of these gases guarantee the transformer health. Among the methods used for this analysis and delimitation of faults, there is Duval Pentagon. The authors hope that the implementation of the algorithm, the aim of this work, will help in the interpretation of the Duval Pentagon, contributing to data analysis and preventive intervention in the event of a detected fault. A comparative experiment was carried out using Artificial Neural Networks. The proposed methods provides a direct identification of the fault, corresponding to the proportions of gases present in a sample of the insulating oil of a transformer under analysis.

Downloads

Download data is not yet available.

Author Biographies

Daniel Bastos, Pontifícia Universidade Católica de Minas Gerais (PUC Minas)

Graduado em Ciência da Computação pela PUC Minas

Ian Rodrigues de Castro Silva, Pontifícia Universidade Católica de Minas Gerais (PUC Minas)

Graduado em Sistemas de Informação pela PUC Minas

Sabine Madsen Ficker, Pontifícia Universidade Católica de Minas Gerais (PUC Minas)

Graduada em Sistemas de Informação pela PUC Minas

Maury Meirelles Gouvêa Júnior, Pontifícia Universidade Católica de Minas Gerais (PUC Minas)

Doutor em Ciência da Computação pela UFPE

Magali Rezende Gouvêa Meireles, Pontifícia Universidade Católica de Minas Gerais (PUC Minas)

Doutora em Ciência da Informação pela UFMG

Published

2024-11-25

How to Cite

BASTOS, Daniel; SILVA, Ian Rodrigues de Castro; FICKER, Sabine Madsen; JÚNIOR, Maury Meirelles Gouvêa; MEIRELES, Magali Rezende Gouvêa. Proposition and Validation of Computational Solutions for Fault Detection in Power Transformers Based on the Duval Pentagon. Abakós, Belo Horizonte, v. 12, n. 2, p. e2024120205, 2024. DOI: 10.5752/P.2316-9451.e2024120205. Disponível em: https://periodicos.pucminas.br/abakos/article/view/33168. Acesso em: 20 aug. 2025.

Issue

Section

Artigos completos / Full papers

Most read articles by the same author(s)

1 2 3 > >>